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ABSTRACT

The net volume tangent count may be performed on a disector sample of a
microstructure; this count provides an unbiased estimate of the Euler
characteristic of the feature set analyzed. For simply connected features
(not necessarily convex), the Euler characteristic is equal to the number
of separate parts of the feature. If the structure consists of a single
multiply connected network, the Euler characteristic is the negative of the
connectivity of the network.

connectivity, disector, number, tangent count, topology

INTRODUCTION

Sterio (1984) has introduced the device called the disector as a sampling
probe that may be used to estimate the number of features in a three
dimensional microstructure. This paper presents a generalization of this
procedure which permits a straight-forward estimation of a more general
topological property of a microstructure: its Euler characteristic
(Santalo, 1967). The method is based upon the application of the volume
tangent count (DeHoff and Rhines, 1968) to the structure.

Theoretical Background

The two topological properties of interest in the characterization of three
dimensional microstructures are the number of disconnected parts in a
feature set and the collective connectivity of all features in the set.

The connectivity is the number of redundant connections in the skeleton
that represents the feature set, and may be visualized as the number of
times one may cut through the members of the set without increasing the
number of separate parts. Features without redundant connections are
called simply connected and have connectivity equal to zero. A feature
that forms a network may have a very large connectivity. These two proper-
ties are usually reported as values per unit volume of microstructure and
are designated by the symbols NV and CV.
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The Euler characteristic of the feature set is defined to be the difference,
(Ny-Cy). This quantity is a useful combination of these two topological
erpeyties because it is simply related to the spherical image (Santalo,
1967) of the feature set.

The Spherical Image of a Feature

The spherical image of a feature is a map of its surface normals on the
sphere of orientation. To visualize the spherical image, consider an
element of surface on the feature shown in Figure la. If the surface is
smooth, then any point P has a unique tangent plane. The normal to the
surface at P is a unit vector that is perpendicular to the tangent plane at
P. The spherical image of the surface at P is obtained by translating the
normal vector to the center of a unit sphere, Figure 1b. The tip of the
vector identifies a point, P', on the unit sphere which is the spherical
image of P on the surface.

2>

(a) (b)

Figure 1. A point P on a smooth surface has a unique tangent plane and
surface normal (a); P' is the spherical image of P (b).

The spherical image of a finite segment of smoothly curved surface is a
segment of area on the unit sphere. It is evident that, for a surface
bounding a convex body, the spherical image covers the unit sphere exactly
once, Figure 2; thus, the spherical image of every convex body is equal to
the area of the unit sphere: 4n. If the bounding surface of a convex body
is not everywhere smooth, i.e., if it has edges and corners, its spherical
image remains 4m if the contributions of the edges and corners are properly
visualized, Figure 3. The spherical image of a point P on an edge, Figure
3b, is the segment of the great circle lying between the spherical images
of the normals at P to the surfaces that meet to form the edge. The
spherical image of a corner, Figure 3c, is a segment of area on the unit
sphere.

It can be shown that, for non-convex simply connected bodies, the net
spherical image of the bounding surface remains 4n (Santalo, 1967). Any
departure from convexity will be accompanied by the presence of some saddle
surface, i.e., surface for which the two principal radii of curvature are
of opposite signs. Let the mapping of the normals to saddle surface be
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(a) (b)

Figure 2. The set of normals for a smooth, closed convex surface (a) map as

a set of spherical images that cover the unit sphere of orijenta-
tion exactly once (b).

(b)

(c)

Figure 3. The spherical image of a point P on an edge of a polyhedron (a)
maps as a segment of a great circle (b). The spherical image of
a corner of a polyhedron (a) is a spherical polygon (c).

assigned a negative spherical image, Q,_, while that for convex (Q,,) and
concave (Q__) elements is defined to be positive. Then the spherical image
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of saddle surface will exactly balance that contributed by concave surface
elements plus excess convex surface elements, so that

+Q__-Q,_ =4n (1)

Thus, the net spherical image of the surface bounding any simply connected
body is a topological invariant and is equal to 4m.

This theorem generalizes in a straight-forward manner to encompass multiply
connected bodies. For the surface bounding a three dimensional feature
with connectivity C, the net spherical image can be shown to be:

Qpet = 4T (1-C) (2)

Some plausibility to this theorem may be derived by inspection of Figure 4.
The outside of the torus is everywhere convex and has surface normals that
cover the unit sphere exactly once. The inside of the torus is composed of
saddle surface elements; its normals also cover the unit sphere exactly
once, and this image is assigned a negative sign. Thus, the net spherical
image is zero. Each additional hole through the body contributes an
additional -4m to the net spherical image, yielding equation (2).

(b)

Figure 4. Surface normals along a "meridian" on the outside convex surface
of a torus (a) map as half a meridian on the unit sphere (b).
Surface normals along a "meridian" on the inside of a torus also
map as half a meridian on the unit sphere (b) but are assigned a
negative value. Rotation of these mappings about the axis of
revolution of the torus covers the unit sphere exactly once for
the outside convex surface, and exactly once, but with a negative
sign, for the inside. Thus, the net spherical image of a torus
is zero.

The Volume Tangent Count

Consider a microstructure composed of a collection of three dimensional
features. Imagine that this three dimensional structure is sampled by
sweeping a plane through the volume of the structure and noting tangents
formed by this plane with elements of the surface bounding features. Sepa-
rate counts are made of the number of tangents formed with convex (++),
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concave (--) and saddle (+-) surface elements. If the boundaries of the
feature set are not smooth, then tangents formed with edges and corners are
included in each category. The net volume tangent count is defined to be:

T T

Vnet © V-- " Tye . @
where TVi' is the ratio of the number of tangents formed in category ij to
the volumd swept out by the plane in performing the analysis.

The tangent count in each category measures the spherical image of surface
in that category (DeHoff and Rhines, 1968). Thus,

Tyss = Q44/2m (4a)
Tyao = 0__/2n (4b)
Tys- = Q,.72n (4c)
and Tnet = Qypet/2m ' (4d)

According to equation (2), the net spherical image of a feature is a topo-
logical invariant, related to the connectivity of the feature. For a
collection of features, the net spherical image per unit volume is thus

QVnet = 4n (NV-CV) (5)

Combining equations (4d) and (5) yields a simple relation between the net
volume tangent count and the Euler characteristic per unit volume of micro-
structure:

2 (Ny=Cy) (6)

Tonet = 2 (Ny=Cy,

Application to the Disector

The disector (Sterio, 1984) is a rudimentary serial section sample of a
microstructure. It consists of two planes cut through the sample a small
distance apart. The spacing is small enough so that inferences can be
drawn about associations of features appearing upon one plane with those
appearing on the other. It is possible to use a disector as a basis for
performing the volume tangent count. It is necessary to assume that the
disectors included in a given analysis provide an isotropic uniform random
(IUR) sample of the structure. The volume sampled by the sweeping plane is
the volume contained within the disector; the direction of sweep of the
plane is normal to the planes bounding the disector. A feature-by-feature
comparison on the two sections permits inference of the tangents formed
with surface elements within the volume of the disector in each of the
categories of interest:

a. A tangent with convex surface elements (T ++) is inferred if a
feature appears on the second plane that Xannot be assigned as a
continuation from a feature on the first plane. A count in this
category is also inferred if a feature on the first section
disappears on the second section.



138 DE HOFF RT: EULER CHARACTERISTIC

b. A tangent count for concave surface elements ( is assigned
if an isolated segment of the matrix (not- featuye appears on the
second section that is not a continuation from the first plane,
or if an isolated segment of matrix disappears between sections.

c. A tangent count is assigned to saddle elements (T +_) for each
branching and joining event inferred to occur between the
sections.

Examples of each of these counts are shown in Figure 5.
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Figure 5. Events that yield contributions to the volume tangent count are
inferred from compar1sons of (a) and (b)
(1) Two features join to form one: s

(2) A new feature appears on plane (bT + =L

(3) One feature branches into two: T+_ = T.

(4) A feature disappears: T, =1

(5) Three features combine to form one: T, = 2.

(6) A hole appears in the feature: T__ = i

(7) A hole in the feature disappears: T__ = 1.




ACTA STEREOL 1987; 6/SUPPL II 139
DISCUSSION

An advantage of carrying out a disector analysis based upon the volume
tangent count derives from the fact that tangents occur at points on the
surface, and a point lies either inside or outside the volume being
sampled. Thus, no corrections for intersections of features with the
boundary of the disector are required. Of course, there is some uncertain-
ty about the position of the point of each tangent counted; but that is a
resolution problem, determined primarily by the spacing between the
sections and not a sample surface bias.

A second advantage of this approach derives from the fact that it applies
to structures in which features may be multiply connected. The information
supplied is the Euler characteristic, and not the separate values of number
and connectivity, which may be of greater interest in many applications.
Nonetheless, the result provides unambiguous information. Further, in the
two 1imiting cases of zero connectivity (all features simply connected) and
a complete network (one single feature, multiply connected), the volume
tangent count yields estimates of number and connectivity, respectively:

Tynet (simply connected) = 2Ny (7a)

TVnet (connected network) = -ZCV (7b)

In general, for complex structures for which both N, and C., have significant
values relative to each other, the disector approacx will Me inadequate to
estimate either N, or CV, and a complete serial sectioning analysis must be
undertaken (Aige1¥inger et al., 1972).

SUMMARY

The net volume tangent count provides an unambiguous and unbiased estimate
of the net spherical image of a feature set in a real three dimensional
microstructure. The net spherical image is in turn related to the Euler
characteristic of the feature set. Thus, the volume tangent count provides
an unbiased estimate of the Euler characteristic for a microstructure. If
the connectivity of the feature set is zero, the tangent count estimates
number of features in the set. If the feature set is a single connected
network, the tangent count estimates its connectivity.

The net volume tangent count may be performed on a disector, i.e., by com-
parison of appearances, disappearances and branching events that may be
inferred to occur between two closely spaced plane sections through the
structure. The resulting estimate is untroubled by sample surface bias
effects.
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