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Abstract: We extend to the superalgebraic case the theory of Lie-Rinehart algebras and work out

some examples concerning the most popular samples of supermanifolds.

1 Introduction

The goal of this article is to discuss some properties of Lie-Rinehart structures in a
superalgebraic context. Let’s first sketch the classical case; a Lie-Rinehart algebra
is a couple (A,L) where L is a Lie algebra on a base field k, A an associative and
commutative k-algebra, with two operations

1. (A,L) ! L denoted by (a,X) ! aX, which induces a A-module structure on L,
and

2. L ! Der(A) denoted as (X, a) ! L
X

(a).

One further axiom is then compatibility condition between those two operations,
given by the following formula:

3. [X, aY ] = L
X

(a)Y + a[X, Y ]

To any (A,L) one can associate its enveloping algebra U(A,L)[6, 7, 8].
A canonical example of Lie-Rinehart structure is associated to any di↵erentiable

manifold V ; let A = O
V

be the algebra of smooth functions on V and L = V ect(V )
the Lie algebra of vector fields on V , operation (2) being then the Lie derivative of
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functions and (1) the natural multiplication of a vector field by a function. In fact,
the general definition was deduced by Rinehart [17] from an algebraic generalization
of that geometric situation. For (A,L) = (O

V

, V ect(V )), the enveloping algebra is
isomorphic to the associative algebra of di↵erential operators on V , as we shall see in
the next part.

Poisson algebras provide another standard example of Lie-Rinehart structures: let
(A, {, }) be a Poisson algebra, then the pair (A,A) where the first A is plainly the
algebra with associative multiplication, and the second one is the Lie algebra given
by Poisson bracket, operation (1) being the multiplication, and (2) being defined as
L
X

(a) = {X, a}; axiom (3) is then a straightforward consequence axiom of Leibniz
derivation for Poisson algebras.

Those Lie-Rinehart structures have been the subject of extensive studies, linked
with symplectic geometry, Poisson structures, Lie groupoids and algebroids [18], and
various kinds of quantizations; cf.[6] for a very extensive survey of those topics.

2 Construction of the enveloping algebra

We shall give below a short sketch of the classical construction, following Hübschmann[6].
Let (A,L) be a Lie-Rinehart algebra on base field k, let U

k

(L) be the enveloping alge-
bra of the Lie algebra L and i

L

: L ! U
k

(L) the canonical map; set X̄ = i
L

(X) and
consider A⌦

k

U
k

(L) with multiplication m defined on generators as follows:

m(a, X̄) = a⌦ X̄

m(X̄, a) = a⌦ X̄ + L
X

(a)

Axioms of Lie-Rinehart algebras guarantee associativity; one can give a more explicit
formula for the product. For u 2 U

k

(L), let �(u) =
P

u0
i

⌦ u00
i

be its coproduct in
U
k

(L), then our algebra structure on A⌦
k

U
k

(L) is given by the following formula:

m(a⌦ u, b⌦ v) = ab⌦ uv +
X

aL
u

0
i
(b)⌦ u00

i

v.

The key fact is that multiplication in A is compatible with its U
k

(L)-module structure;
analogous structures can be found in the Hopf algebras of algebraic topology (Massey-
Peterson algebras), cf. [6].

One then considers the two-sided ideal J ⇢ A ⌦
k

U
k

(L) generated by elements
ab⌦ X̄ � a⌦ bX̄. One checks (ab⌦ X̄ � a⌦ bX̄)(c⌦ Ȳ ) = abc⌦ X̄Ȳ + abL

X

(c)⌦ Y �
ac⌦ bX̄Ȳ � aL

bX

(c)⌦ Y = abc⌦ X̄Ȳ � ac⌦ bX̄Ȳ , which lives in J ; an analogous and
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straightforward computation works for the product on the left. Finally, the enveloping
algebra of (A,L) is defined as the quotient:

U(A,L) = A⌦
k

U
k

(L)/J.

As an example it is easy to check, as announced above, that for any manifold V

U(O
V

, V ect(V )) = Diff(V )

the associative algebra of di↵erential operators on V .

Remark: So Rinehart’s theory gives a direct and elegant way of dealing with the
irritating problem of relations between di↵erential operators on a manifold and the
enveloping algebra of Lie algebra of vector fields, V ect(V ) being viewed as di↵erential
operators of order 1 while semi-direct product V ect(V )nO

V

gives di↵erential operators
of order  1. One checks that Diff(V ) is a non trivial quotient of U(V ect(V )nO

V

).

Moreover, U(A,L) inherits from U
k

(L) a filtration by tensor degree, and Poincaré-
Birkho↵-Witt theorem enables to identify the graded algebra associated with that
filtration: from gr U

k

(L) = S⇤
k

(L) one deduces gr U(A,L) = S⇤
A

(L), the symmetric
algebra on L viewed as a A-module. In the case where (A,L) = (O

V

, V ect(V )), one
then recovers the well-known fact that gr Diff(V ) = S⇤

OV
(V ect(V )), the algebra of

symbols of di↵erential operators, or more geometrically, the space of symmetric tensor
fields on V. We have found here the link with Poisson geometry, since those tensor
fields are nothing but polynomial functions on the symplectic manifold T ⇤V, equipped
with the Liouville form.

3 Lie-Rinehart superalgebras

The description of the historical foundation of superalgebra and supergeometry can
be found in[2], for a detailed introduction with basic definitions, cf.[4]. The defini-
tion is very natural: a Lie-Rinehart superalgebra is a couple (A,L) where L is a Lie
superalgebra and A is an associative and super commutative algebra; recall that super-
commutativity reads as ab = (�1)|a||b|ba following Quillen (or Koszul) rule. Axioms (1)
and (2) can be generalized word for word to the super case, the mappings must respect
the graduations, i.e. |aX| = |a| + |X| and |L

X

(a)| = |a| + |X|. The key modification
appears for axiom (3) in the following form :

(30)[X, aY ] = L
X

(a)Y + (�1)|a||X|a[X, Y ]

(Warning: each element in L and A can have its own independent graduation). See[3]
for some results about such structures.
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The construction of the enveloping Lie algebra U(A,L) can be straightforwardly
generalized to the super case; in particular one has the graded version of Poincaré-
Birkho↵-Witt theorem with gr U(A,L) = S⇤,super

A

(L). But one has to be careful, since
supersymmetric tensor product S⇤,super mean symmetric on even terms, and antisym-
metric on odd ones; in other words, if E splits according to parity, as E = E

even

�E
odd

,

then S⇤,superE = S⇤E
even

⌦ ⇤⇤E
odd

.

We shall describe now the most popular examples of supermanifolds, and we shall
further investigate them from the point of view of Lie-Rinehart structures.

Let W be any supermanifold, let O
W

be its super algebra of functions (the ”struc-

tural sheaf” of W ); the Lie superalgebra of tangent vector fields on W , by analogy
with the classical case, will then be defined as the Lie superalgebra of graded deriva-
tions of O

W

, so V ect(W ) = Der(O
W

). We shall investigate pairs (O
W

, L), where
L ⇢ V ect(W ) is both a sub Lie superalgebra, and O

W

-submodule of V ect(W ).

From any di↵erentiable manifold V various supermanifold structures can be ob-
tained using di↵erent sheaves of associative and graded commutative algebras, which
will define various superizations of V , by the sheaves of their superfunctions :

1. The supermanifold Ṽ has as structural sheaf O
˜

V

= ⌦⇤(V ), the sheaf of contravari-
ant tensor fields on V ;

2. The supermanifold V̂ has as structural sheaf O
ˆ

V

= ⌦⇤(V ), the sheaf of di↵erential
forms on V ;

3. More generally, one associates to any vector bundle E ! V a supermanifold VE ,
with structural sheaf the sheaf of sections �(V,⇤⇤E⇤).

A well known theorem of M.Batchelor[1] implies that in the di↵erentiable case all su-
permanifold structures can be deduced from case 3. Our examples above are obtained
from E = ⌧V and E = ⌧

0
V , the tangent and cotangent bundle to V respectively.

4 The purely odd supermanifold of dimension 0|n

We shall begin with the purely odd case, which is easier, since it reduces to pure
algebra; so, let E be an n-dimensional vector space considered as a purely odd super-
manifold of dimension 0|n, the underlying di↵erentiable manifold being then reduced
to a point. The space of functions O

E

is the exterior algebra on the dual ⇤(E
0
), and

the superalgebra of vector fields on E is the space of E�valued multilinear maps on
E, so V ect(E) = ⇤(E

0
;E) = ⇤(E

0
)⌦ E.
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The algebraic operations are then straightforwardly defined: if ⌘ 2 O
E

and ↵⌦x 2
V ect(E), operation (1) reads as

(⌘,↵⌦ x) ! ⌘ ^ ↵⌦ x,

while operation (2) (graded Lie derivative) gives

(↵⌦ x, ⌘) ! L
↵⌦x

(⌘) = ↵ ^ i
x

⌘,

where i
x

denotes the inner product of vectors on exterior forms. One deduces from the
formula that if ↵ has degree |↵| as exterior form, then vector field ↵ ⌦ x has degree
|↵|� 1 as graded derivation. It is easy to check that the graded commutator of those
graded Lie derivatives satisfies :

[L
↵⌦x

, L
�⌦y

] = L{↵⌦x,�⌦y},

the latter bracket being Nijenhuis-Richardson bracket, given by the following for-
mula:

{↵⌦ x, � ⌦ y} = i(↵⌦ x)(� ⌦ y)� (�1)(|↵|+1)(|�|+1)i(� ⌦ y)↵⌦ x,

or
{↵⌦ x, � ⌦ y} = ↵ ^ i

x

� ⌦ y + (�1)|↵||�|+|↵|+|�|� ^ i
y

↵⌦ x.

The graded Lie algebra V ect(E) is then the Nijenhuis-Richardson algebra [16], well-
known for its applications in deformation theory of Lie algebras; its bracket can be
defined axiomatically as the canonical graded extension of the Lie bracket (given by
commutator) on E

0 ⌦ E = gl(E). The relation (3) of compatibility can be proved
directly from the above formula , by a tedious but direct computation:

L
↵⌦x

(⌘ ^ � ⌦ y) = (L
↵⌦x

(⌘))� ⌦ y + (�1)|⌘||(|↵|�1)⌘ ^ {↵⌦ x, � ⌦ y}
So we have obtained an explicit example of a graded Lie-Rinehart algebra.

We can now describe its enveloping algebra; the graded algebra associated to it
satisfies gr U(O

E

, V ect(E)) = S⇤,super
OE

(V ect(E)), as mentioned in the previous part.
As a O

E

�module V ect(E) is generated by E, so it is purely odd and S⇤,super reduces
to ⇤⇤ in that case. So one has

gr U(O
E

, V ect(E)) = O
E

⌦ ⇤⇤(E) = ⇤⇤(E)⌦ ⇤⇤(E 0),

which is graded-commutative.The enveloping algebra U(O
E

, V ect(E)) is then a non
graded-commutative deformation of ⇤⇤(E) ⌦ ⇤⇤(E 0) : this is precisely the relation
between di↵erential operators and their symbols. One can interpret this deformation
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in the following way: consider the direct sum of E with its dual, so let E = E � E 0,
and let <,> be the symmetric non degenerate bilinear form on E defined by duality,
so: < x + ↵, y + � >= ↵(y) + �(x). We can extend the form <,> to an odd Poisson
bracket on ⇤⇤(E). Finally, one can check that our algebra of di↵erential operators in
dimension 0|n turns out to be isomorphic to Cli↵ord algebra C(E, <,>). See [12] for
results of that kind.

Remark: An analogous construction in the purely even case leads to consider the
symmetric algebra S⇤(E 0) as the space of polynomial functions on E; then V ect(E)
is the space of formal vector fields on E, and (S⇤(E 0), V ect(E)) is a Lie-Rinehart
algebra, whose enveloping algebra is the algebra of formal di↵erential operators on
E. The latter can also be obtained through a well-known Lie theoretic construction:
on E = E � E 0 let’s consider the canonical symplectic (instead of symmetric) form
$(x + ↵, y + �) = ↵(y) � �(x), which yields the Heisenberg Lie algebra, and the
algebra of di↵erential operators on E, or Weyl algebra, is obtained as a quotient of its
envelopping algebra.

5 The case of Ṽ

We begin with a more precise definition; let ⌧
V

! V be the tangent bundle of V ,
and let ⇤⇤⌧V ! V be the exterior algebra bundle associated to it. Then ⌦⇤(V )
can be identified with its space of sections �(V,⇤⇤⌧V ), in other words the space of
antisymmetric contravariant smooth tensor fields. Then ⌦⇤(V ) is an associative graded
commutative algebra for the exterior product ^ of those tensor fields: if |A| denotes
the degree of the tensor field A 2 ⌦⇤(V ), one has:

A ^ (B ^ C) = (A ^B) ^ C

A ^ B = (�1)|A||B|B ^ A

One has moreover a Lie superalgebra structure, where ⌦⇤(V ) acts onto itself by graded
derivations through Schouten bracket

2[ , ], one has ⌦
1

(V ) = V ect(V ) and Schouten
bracket can then be defined as the unique graded extension of Lie bracket of vector
fields, so ⌦⇤(V ) ⇢ Der(⌦⇤(V )).

One must take care of degree shifting, a tensor A 2 ⌦|A|(V ) has degree |A| for
associative product, but degree |A|�1 as a derivation through Schouten bracket (think
of the case of vector fields!); let’s now summarize its properties:

1. Graded antisymmetry: [B,A] = �(�1)(|A|�1)(|B|�1)[A,B]
2
This bracket should be called Schouten-Nijenhuis, we shall say Schouten for short, but the name of Albert Nijenhuis

(1926-2015)[15][10] will appear in the sequel for di↵erent brackets
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2. Graded Jacobi identity:

P
(A,B,C)

(�1)(|A|�1)(|C|�1)[A, [B,C]] = 0

3. Graded Leibniz rule: [A,B ^ C] = [A,B] ^ C + (�1)|B|(|A|�1)B ^ [A,C]

The third formula expresses compatibility between the two operations, more precisely
Schouten bracket with A is a derivation of degree |A|� 1 of O

˜

V

=⌦⇤(V ), as remarked
above. To avoid confusion between the two operations we shall use degree shifting; let
k[1] be the graded k-module with k in degree 1 and 0 elsewhere. Setting ⌦⇤(V )[1] =
⌦⇤(V )⌦ k[1] shifts the degree by one.

So the pair (A,L) associated to Ṽ will be (⌦⇤(V ),⌦⇤(V )[1]); one sees at once that
one has a super Lie-Rinehart structure, since compatibility axiom (3’) turns out to be
exactly graded Leibniz rule.

6 The case of V̂

In the formulas below, the bracket [, ] will be reserved for the graded commutator,
except perhaps the good old Lie bracket of vector fields on a (non super-)manifold
when there will be no ambiguity. We shall use di↵erent notations for other brackets:
{, } for Nijenhuis-Richardson, and J, K for Frölicher-Nijenhuis.

In order to identify V ect(V̂ ) we shall consider the space of vector valued di↵erential
forms on V , denoted by ⌦⇤(V, ⌧

V

). We shall show that those forms act on ⌦⇤(V ) by a
natural generalization of the action of vector fields, by inner product or Lie derivative.
We shall denote, by a slight abuse of notation, a generic element X 2 ⌦⇤(V, ⌧

V

)
by X = ↵ ⌦ x with ↵ 2 ⌦⇤(V ) and x 2 V ect(V )(rigorously speaking, this is valid
only locally and after some summation, but extension to the general case doesn’t add
di�culties, since we can use partitions of unit in order to glue local pieces together).

Now X = ↵⌦ x acts on ⌘ 2 ⌦⇤(V ) by inner product as:

(X, ⌘) ! i(X)⌘ = ↵ ^ i(x)⌘.

One checks immediately that i(X) is a graded derivation of degree |i(X)| = |↵| � 1,
so ⌦⇤(V, ⌧

V

)[1] is a space of derivations of ⌦⇤(V ). A well-known derivation of ⌦⇤(V ) is
exterior derivative d, and one defines Lie derivative with respect to X by intertwining
inner product and exterior derivative as in the case of vector fields:

L
X

= [i(X), d],

where the bracket here denotes simply the graded commutator. If one defines by
I 2 ⌦⇤(V, ⌧

V

) the element satisfying I(a) = Id(T
a

V ) for any a 2 V , then one has
i(I)⌘ = |⌘|⌘, and L

I

= d.
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In the general case, the explicit formula is the following :

L
X

⌘ = ↵ ^ L
x

⌘ + (�1)|↵|d↵ ^ i(x)⌘.

As a graded derivation one has |L
X

| = |↵|, so with Lie derivative ⌦⇤(V, ⌧
V

) is a space
of derivations of ⌦⇤(V ). One can furthermore generalize the classical Cartan formulas
for Lie derivative and inner product. One has:

1. [i(X), i(Y )] = i({X, Y })
2. [L

X

, i(Y )] = i(JX, Y K) + (�1)|X||Y |+1L
i(X)Y

3. [L
X

,L
Y

] = LJX,Y K

It is now easy to check the first equality, the action of X through i(X) being purely
algebraic, fibrewise tensorial; from X 2 ⌦k(V, ⌧

V

), one deduces for each a 2 V that
X(a) 2 ⇤kT

a

V ⇤ ⌦ T
a

V , and so the action of i(X) identifies with the dim 0|n case as
developed in part (4) . Finally the bracket {, } identifies with Nijenhuis-Richardson
bracket on each fiber:

{X, Y }(a) = {X(a), Y (a)}.
Formula (2) and (3) define in fact a new graded Lie bracket, known as Frölicher-
Nijenhuis bracket:

⌦k(V, ⌧
V

)⇥ ⌦l(V, ⌧
V

) ! ⌦k+l(V, ⌧
V

)

(X, Y ) ! JX, Y K,
it can also be characterized as the unique graded Lie bracket which extends the Lie
bracket on V ect(V ) = ⌦0(V, ⌧

V

) to ⌦⇤(V, ⌧
V

).

Moreover, one has a structure of graded ⌦⇤(V )�module on ⌦⇤(V, ⌧
V

) defined as
(⌘,↵⌦ x) ! (⌘ ^ ↵)⌦ x.

One can also define Frölicher-Nijenhuis bracket by the following explicit formula, if
X = ↵⌦ x and Y = � ⌦ y, then :

J↵⌦x, �⌦yK = ↵^�⌦[x, y]+↵^L
x

�⌦y�L
y

↵^�⌦x+(�1)|↵|(d↵^i(x)�⌦y+i(y)↵^d�⌦x),

cf.[10] p.70 sqq.

This bracket plays a key role in integrability of almost complex structures through
Newlander-Nirenberg theorem, and also in integrability of multihamiltonian systems
in finite dimension[11].

The Lie superalgebra of vector fields on V̂ is then characterized by the following:
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Proposition (Frölicher and Nijenhuis, cf.[10][5]):

V ect(V̂ ) = Der(O
ˆ

V

) = ⌦⇤(V, ⌧
V

)[1]� ⌦⇤(V, ⌧
V

),

the derivations being defined as follows: (A,X) 2 ⌦⇤(V, ⌧
V

)[1] � ⌦⇤(V, ⌧
V

) acts on
⌘ 2 ⌦⇤(V ) as L(A,X)⌘ = i(A)⌘ + L

X

⌘.

One can now compute the commutator, by checking on test di↵erential forms and
using formulas of the appendix:

[L(A,X),L(B, Y )] = L({A,B}+JX,BK+(�1)pq+1JY,AK, i(A)Y+(�1)pq+1i(B)X+JX, Y K)

if |(A,X)| = p and |(B, Y )| = q.

That Lie superalgebra will be denoted by FN ⇤(V ), with FN p(V ) = ⌦p+1(V, ⌧
V

)[1]�
⌦p(V, ⌧

V

). It admits a natural structure of graded module on the graded commutative
associative algebra O

ˆ

V

= ⌦⇤(V ), defined by the following formula :

�.(A,X) = (� ^ A+ (�1)|�|+|X|d� ^X,� ^X),

for any � 2 O
ˆ

V

.

One then remarks immediately that ⌦⇤(V, ⌧
V

)[1] is a sub O
ˆ

V

-module of FN ⇤(V ).

Remark : As remarked by the authors in [10] p.72 the commutator formula
above looks like a reciprocal semidirect product of Frölicher-Nijenhuis and Nijenhuis-
Richardson algebras, but is more intricated; in [13] the author considers the relevant
structure for that kind of algebra, which he calls knit product. Moreover, ⌦⇤(V, ⌧

V

) is
not a sub O

ˆ

V

-module of FN ⇤(V ), as we can easily see from the formula of the action
of O

ˆ

V

; one has a short exact sequence of O
ˆ

V

-modules, which doesn’t split :

⌦⇤(V, ⌧
V

)[1] ! FN ⇤(V ) ! ⌦⇤(V, ⌧
V

)

So we have two natural candidates for Lie-Rinehart structures associated to V̂ :

1. (A,L) = (O
ˆ

V

,⌦⇤(V, ⌧
V

)[1])

2. (A,L) = (O
ˆ

V

,FN (V ))

Case 1 is easy, and one has the following

Proposition 6.1: (O
ˆ

V

,⌦⇤(V, ⌧
V

)[1]) with the operations given above defines a

Lie-Rinehart structure on the supermanifold V̂ .

The proof is now straightforward, since it is enough to rewrite the computations of
part 4 in a fibrewise version, the superspace being T

a

V for every a 2 V . Moreover,
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one can consider the bundle ⌧V � ⌧V ⇤ ! V , equipped with the naturally defined
symmetric non degenerate bilinear form, then one has the Cli↵ord bundle associated
to that data Cliff(V ) ! V. The algebra of di↵erential operators on (O

ˆ

V

,⌦⇤(V, ⌧
V

)[1])
is then isomorphic to the space of sections of that Cli↵ord bundle.

The case 2. leads to much more complicated calculations, but one has:

Proposition 6.2: The pair (O
ˆ

V

,FN (V )) is a Lie-Rinehart algebra.

7 Appendix

We shall give here some useful formulas for brackets in the Lie superalgebra FN (V ).
If X 2 ⌦p(V, ⌧

V

) and Y 2 ⌦q+1(V, ⌧
V

), one has

[L
X

, i(Y )] = i(JX, Y K) + (�1)pq+1L
i(X)Y

,

which is equivalent to:

[i(Y ),L
X

] = L
i(X)Y

+ (�1)pi(JY,XK).

Those formulas can be found in [10].

Moreover, the bracket J, K doesn’t induce a structure of a Lie Rinehart algebra,
the obstruction of axiom (3’) being satisfied, will be called by analogy with physics
literature, the anomaly; it plays a key role in the proof of proposition (6.2) above. The
formula of the anomaly is the following:

J� ^X, Y K = � ^ JX, Y K + (�1)b(a+l)L
Y

� ^X + (�1)a+ld� ^ i(X)Y
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