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KKM PROPERTY IN TOPOLOGICAL SPACES

J. ZAFARANI

ABSTRACT. In this paper we give a brief survey of some recent
generalizations of the Fan-KKM theorem. We introduce a new
convex structure on a nonempty set M which contains all different
concepts of convexity. Some approximate fixed point theorems will
be established for the multivalued mapping with S-KKM property
on the ® spaces. We also obtain a generalized Fan matching theo-
rem, a generalized Fan-Browder type theorem, and a new version
of Sadovskii’s fixed point theorem.

1. INTRODUCTION

In 1929, Kanster-Kuratowski-Mazurkiewicz established the celebra-
ted KKM theorem [37]. The most important result for KKM mappings
is the famous Fan-KKM theorem [26], which has been used as a very
versatile tool in modern nonlinear analysis and from which many far-
reaching extensions have been made. The generalization for the concept
of KKM mappings was first introduced by Park [40] and followed by
Chang and Zhang [17] and many others (cf. [11] and [45]).

Chang and Yen [13-14] made a systematic study of the class of the KKM
mappings. Motivated by their work, Chang et al. [15] introduced the
family of multivalued mappings with the S-KKM property.

As shown in [14], the KKM mappings are contained in the S-KKM
mappings and generally this inclusion is proper.

Here we introduce the class of the S-KKM mappings for the sets with
a [-convex structure, a class of convexity which contains all the differ-
ent concepts of convexity, mainly abstract convex structure [39, 46] and
metric spaces. We obtain also some fixed point theorems for the multi-
valued mappings with S-KKM property on the ® spaces. Furthermore,
we obtain a generalized Fan matching theorem, a generalized version
of Fan-Browder’s fixed point theorem and a new version of Sadovskii’s
fixed point theorem in our context.
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Let us introduce the notations used in this paper and recall some
basic facts. Let M be a nonempty set; we shall denote by 2¥ the
family of all subsets of M and by (M) the family of all nonempty finite
subsets of M.

Suppose that Y and M are two topological spaces and F : M — 2V
is a multivalued mapping, the fibers F~(y) for y € Y are defined by
F(yy={zeM: ye F(z)}.

A multivalued mapping F : M — 2Y is said to be:
compact if the closure of its range F'(M) is compact in Y,
upper semi-continuous (u.s.c.) if for each closed set B C Y, F~(B) =
{z e M:F(z)N B # &} is closed in M;
lower semi-continuous(l.s.c.) if for each open set B C Y, F~(B) =
{re M:F(z)N B # &} is open in M,
continuous if it is both u.s.c. and ls.c.;
closed if its graph G,(F) = {(z,y) € M x Y 1y € F(x)} is closed.

A nonempty topological space is acyclic if all its reduce homology
groups over the rationals vanish.

Kanster-Kuratowski-Mazurkiewicz [37] established the famous KKM
theorem which is of great importance in nonlinear analysis. This theo-
rem first appeared in their well known proof of the Brower fixed point
theorem.

The KKM Principle 1.1 [37]. Let D be the set of vertices of A, and
G : D — 2% be a KKM map (that is, coA C G(A) for each A C D)
with closed values. Then, N,epG(z) # 0.

The most important result for the KKM mappings is the famous Fan-
KKM theorem [26], which is a generalization of the KKM principle in
the setting of infinite dimensional spaces. This theorem provides an
essential tool to study minimax inequalities.

Fan-KKM Theorem 1.2 [26]. Let X be a convex subset of a Haus-
dorff tvs. E, Xo € X. Suppose that G : Xg — 2% is a KKM map.
(that is, coA € G(A) for each A € (Xo)) If all the sets G(z) are closed
subsets of Y, then the family {G(z) : © € Xo} has the finite inter-
section property. Moreover, if the value of G at a point To € Xg is
compact, then Nyex,G(z) # 0.

Afterwards, some authors (cf. [4], [16], [18], [20], [45]) improved
the Fan theorem by introducing the concept of transfer closedness and
relaxing the closedness condition. Let X be a nonempty set, ¥ a topo-
logical space. Then G : X — 2Y is said to be transfer closed-valued if
for any (x,y) € X x Y with y & G(z), there exists ' € X such that
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y & clG(x'). It is clear that this definition is equivalent to saying that

() G(z) = [ IG(=).

zeX zeX
If AC X and B C Y, then we call G : A — 27 transfer closed-valued
if the multi-valued mapping z — G(z) [ B is transfer closed-valued.
In the case where X =Y and A = B, we call G transfer closed-valued
on A. On the other hand, in [11] the authors improved the Fan the-
orem by assuming the closedness condition only upper finite dimen-
sional subspaces, with some topological pseudomonotone condition.
In [18], Chowdhury and Tan, replacing finite dimensional subspaces
by polytopes, restated the Brezis-Nirenberg-Stampachia result [11] un-
der weaker assumptions. In [31], Kalmoun gave a refined version of
Chowdhury and Tan [18]. In [23], we improved this last refined version
based on a work of Ding and Trafdar [20]. More recently we could
obtain the following result.

Theorem 1.3 [25]. Let X be a nonempty convex subset of a Husdorff
tw.s. E. Suppose that G, F : X — 2% are two multi-valued mappings
such that the following conditions are satisfied:

(Al) F(z) C G(z) forallz € X,

(A2) F is a KKM map,

(A3) for each A € (X)), G is transfer closed-valued on coA,

(Ad) for each A € (X)

cx( () Gz))NecoAd=([) G(x)) N coA,
z€COA z€COA
(AB) there is a nonempty compact conver set B C X such that
clx(Nyep G(x)) is compact.

Then, (Nyex G(z) # 0.

On the other hand Chang and Zhang [17] introduced the concept of
generalized KKM maps as follows: Let X be a set and Y be a convex
subset of a topological space E. A multivalued mapping G : X — 2V
is called a generalized KKM map if for each subset A = {zg, ....,2,}
of X, there exists a finite subset B = {yo, ..., y»} of Y, not necessarily
all different, such that: co({yi, .., %;;}) € Ui—o G(zi,) for any subset
{9, .- 9, } of B.

Until 1983, all the KKM theorems and related topics were considered
and studied in topological vector spaces in the most general framework.
In this setting, convexity assumptions play a crucial role in solving this
variety of problems. Horvath [28] replacing convex hulls by contractible
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subsets, gave a purely topological version of the KKM theorem. This
has motivated other mathematicians to go into the question for gener-
alized KKM theorems over topological spaces with no linear structure
(cf. [7], [13], [16], [41], [43], [22]). The concept of generalized KKM
maps for these cases has been obtained by Tan [23], Ding [4], Park-
Lee [44], Kirk et al. [35] and more recently in [21].

Let A be a bounded subset of a metric space (M, d). Then coA =
M{B C M :B closed ball /A C B}, AMM)={ACM:A=co(A)}
i.e. A is an intersection of closed balls. In this case we say that A is
admissible set in M. A is called subadmissible, if for each D € (A4),
co(D) C A. Obviously , if A is an admissible subset of M, then A must
be subadmissible.

The following definition of metric KKM mappings is given by Khamsi
in {32]. Let X be nonempty subset of a metric space M and Y be a
topological space. A multivalued mapping F : X — 2V is called a
metric KKM mapping if for each A € (X)), co(A) C F(A).

A metric space (M, d) is called hyperconvex Aronszjan and Panitch-
pakdi [5], if for any collection of points {z, : @ € I} of M and any
collection of nonnegative reals {r, : @ € I'} such that d(z,, zg) < r4+75
for all o, 3 € I, then MuerB(Tq4, 7o) # 0.

The spaces (R™, ||.]|eo), [, and L> are concrete examples of Hyper-
CONVEX Spaces.

Khamsi-KKM Theorem 1.4.[32]. Let M be a hyperconver space,
X C M, and G : X — 2M o KKM-map such that the sets G(z) are
closed subsets of M, then the family {G(x) : x € X} has the finite
intersection property.

Chang and Yen [13-14] made a systematic study of the class of the
KKM mappings: Let X be nonempty convex subset of a topological
vector space and Y a topological space. If G- X — 2¥ F: X — 2¥ are
two multivalued maps such that for any A € (X)), F(co(A)) C G(A),
then G is said to be a generalized KKM mapping respect to . Let
F : X — 2¥ be a multivalued mapping such that if G : X — 2V
is a generalized KKM mapping with respect to F, then the family
{clG(z) : z € X} has the finite intersection property. In this case
we say that £ has the KKM property. We define KKM(X,Y) =
{F: X — 2¥ : F has KKM property}. It is shown that the class
KKM(X,Y) contains the admissible class introduced by Park [40}, and
many other important classes of multivalued mappings [38]. Moreover,
Chang and Yen [14] have shown that this inclusion is proper.
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Motivated by this work of Chang and Yen [14], Chang et al. [15]
introduced the family of multivalued mappings with S-KKM property.
Let X be nonempty set, ¥ be a convex set and Z a topological space.
fS: X —-2Y.7T:Y - 2% and F: X — 2% are three multivalued
mappings satisfying :

T(coS(A)) € F(A)

for each A € (X), then F'is called a generalized S-KKM mapping with
respect to 7. If the multivalued mapping T : Y — 27 satisfies the
requirement that for any generalized S-KKM mapping F with respect
to T the family {c/F(z) : £ € X} has the finite intersection property,
then 7T is said to have the S-KKM property. We define

S—KKM(X,Y,Z):={T:Y — 27 : T has S-KKM property}.
As shown [15], when X =Y and S is the identity mapping [x, then

S~ KKM(X,X,Z) = KKM(X,Z) and moreover, KKM(Y, Z) is
contained in S — KKM(X,Y,Z) for any S : X — 2Y and generally

this inclusion is proper.

2. I'-CONVEX SPACES AND FIXED POINT THEOREMS

In this section we introduce a new convex structure on a nonempty
set M which contains all the different concepts of convexity. We define
KKM mappings and S-KKM mappings similarly to the case of convex
spaces. Some approximate fixed point theorems will be established for
the multivalued mapping with S-KKM property on ® spaces.

Definition 2.1. A T'-convex space (M, D;I') consists two nonempty
sets M, D and a multivalued mapping I : (D) — 2™, If D C M and
X C M, then X is called I'-convex if for each A € (DN X) implies
I'4) c X.

The following are the main examples of I'-convex spaces.

Examples 2.2.(a). A family C of subsets of a set M is an abstract
convexity structure for M if § and M belong to C and C closed un-
der arbitrary intersection. This kind of convexity was widely studied
(cf. [39] and {46] ). For any X C M, a natural definition of the C-hull
is coc(A) = [{B € C : A C B}. We say that X is C-convex (or in
brief, convex) if X is equal to its C- convex hull. If M has an ab-
stract convexity structure C, then (M, M;I') is a I-convex space where
I'(A) = coc(A) for each A € (M).

(b). Let (M, d) be a pseudo-metric space. If we set D = M and define
I'(A) = co(A) for each A € (M), then (M, M;T) is a I'-convex space.
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(c). There are more examples of I'-convex spaces namely K-convex
structure, hyperconvex spaces, H-spaces, L-spaces, G-convex spaces
and mc-spaces. For further information about these structures and
spaces, one can refer to Llinares [39] and references therein.

Remark. Our definition of I-convexity is similar to the definitions
of G-convex spaces introduced by Park [41, 43] and to the L-spaces due
to Ben-El-Mechaiekh et al. [9]. The distinction between our definition
of I'-convexity with other kinds of convexity which are mainly men-
tioned in the part (c) of the above example is that we do not consider
the existence of a continuous function from a simplexe to I'(A) for each

A€ (D).

Motivated by the work of Chang and Yen [14], we define in a similar
way the class of the multivalued mappings with KKM property. Let
(M, D;T") be a I'-convex space and Y a topological space. f T': M —
2¥ and F : D — 2Y are two multivalued mappings such that for
any A € (D) T(I'(A)) € |, F(z), then F' is said to be a generalized
KKM mapping with respect to 7. A multivalued mapping T : M — 2¥
is said to have the KKM property if for any KKM map F : D —
2Y with respect to T, the family {c/F(z) : z € D} has the finite
intersection property. We let KKM(M,Y) = {T": M — 2¥ : T has
KKM property}.

Similarly, by the work of Chang et al. [15] we introduce the family of
multivalued mappings with the S-KKM property as follows. Let X be
nonempty set, (M, D;T") a [-convex space, and Y a topological space.
IfS: X > D, T:M—2"and F: X — 2¥ are three multivalued
mappings satisfying :

T(I(S(A)) € | Fl=)
€A
for each A € (X), then F is called a generalized S-KKM mapping
with respect to 7. If the multivalued mapping T : M — 2Y satisfies
the requirement that for any generalized S-KKM mapping F' with re-
spect to T the family {cIF(z) : © € X} has the finite intersection
property, then T is said to have the S-KKM property. We define
S-KKM(X,M,Y) :={T: M — 2¥ : T has S-KKM property}.

In order to establish the main result of this paper for the mappings
with the S-KKM property, we define the ® maps and $-spaces.

Definition 2.3. (a). Let (M, D;I) be a I'-convex space and Y a
topological space. A map T :Y — 2™ is called a ®-map if there exists
amap G : Y — 27 such that
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(i) foreach y € Y, A € ((G(y)) implies ['(A) C T'(y); and
(i) Y = Y{IntG~(z) : z € D}.
(b). A I'-convex space (M, D;T) is called a ®-space if M is a uniform

space and for each entourage V' there is a ®-map T : M — 2™ such
that Gr(T) C V.

The concept of ®-maps and P-spaces are originated from Ben-El-
Mechaiekh et al. (8], Horvath [28-29] and motivated by the works of
Fan and Browder [12]. These notions also have been studied by Ben-
El-Mechaiekh et al. [9], and more recently by Park [41] and Kim and
Park [34]. Let (M, D;T) be a ®-space and F : M — 2M. We say
that F' has an approximate fixed point if for any U € U where U is a
basis of the uniform structure of M, there exists an x € M such that

Ulz] N F(z) # @.
Theorem 2.4.[3]. Let (M,D;T') be a ®-space and S+ M — D a

surjective function. Suppose that F € S-KKM(M, M, M) s compact,
then F' has an approzimate fized point.

By the above theorem we obtain the following fixed point theorem.

Corollary 2.5. Suppose that all of the assumptions of the above theo-
rem hold and F is closed, then F has a fired point.

Remark (a). As G-convex spaces are [-convex spaces and as by
Lemma 2.5 of [24], any better admissible which is upper semicontin-
uous, compact and closed valued has the KKM property, the above
corollary refines the main results of [34, Theorem 4.2] and [41, Theo-
rem 3.3] in our context.

(b).  Horvath [30] found that hyperconvex spaces are a particular
type of C-spaces, hence they are G-convex spaces. In [24, Lemma
2.7] it has been shown that those multivalued mappings defined on G-
convex spaces which are closed, compact and acyclic valued have the
KKM property. Hence, the above Corollary improve Theorems 2.1 and
2.2 of Wu et al. [47].

By a similar proof to the one given by Chang et al. [14 , Proposition
2.3(i1)], we can obtain the following lemma.

Lemma 2.6. Let (M,D;I) be a I'-convex space, X a nonempty set
and Y, Z topological spaces. Suppose that the maps S . X — D,
T e S-KKM(X,M,Y) and f .Y — Z 1is continuous, then fT belongs
to S-KKM(X, M, 7).

As a consequence of Corollary 2.5 and Lemma 2.6, we obtain a
Schauder type fixed point theorem for I'-convex spaces.
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Corollary 2.7. Let (M, D;T) be a Hausdorff ®-space. Suppose that
the identity mapping I : M — M belongs to KKM(M, M), then any
continuous mapping f : M — M such that clf(M) is compact, has a
fized point.

In the following we give some examples of metric spaces for which
the identity mapping 7 : X — X belongs to KKM (X, X).

We say that (M,d) is an N'R-metric space, if there exists a closed
convex subset (£, p) of a completely metrizable Hausdorff topological
vector space (V, p) in which

plazy + Bxy, ayr + Pya) < max(p(z;, yl)v_‘P(-T?:yz)): (%)

for each z1, 2z, 91,10 € E, o+ 0 =1,0,0 >0,

such that (M,d) can be isometrically embeded into (F, p) and there
exists a nonexpansive retraction r : ¥ — M.

Every hyperconvex space is an N'R-metric space [5, 32]. Note that
when (V, p) is a Banach space, this space is an 1-CAR set in the sense
of Agrawal et al.[1], and the condition (*) holds.

Let (M), d;) and (M, ds) be two N'R-metric spaces. It is easy to
show that (M, x My, d), where d = (d} + dg)w, is an N'R-metric space.
Hence despite the fact that finite products of hyperconvex spaces in
general are not hyperconvex (cf. Theorem 4.1 of Borkowski et al. [10}),
they are N'R-metric space.

The following lemma shows that in every N'R-metric space (M, d)
and for any subadmissible subset X of M, the identity mapping belongs
to KKM(X, X).

Lemma 2.8. Let (M,d) be an N'R-metric space , then r(convA) C
co(A), for any A € (M).

Remark. The Fan-KKM Theorem implies that the identity mapping
in normed spaces is an elements of KK M(X, X) for any convex set
X. The Khamsi-KKM Theorem [32] shows that when M is hypercon-
vex, then I € KKM(X,X) for X € A(M). This result is also true
for a metric topological vector spaces E such that all balls are con-
vex. In fact by the Fan-KKM Theorem, the identity mapping belongs
to KKM(X,X) for each convex subset X of E. Hence the identity
mapping also belongs to KK M (X, X) with respect to metric of E for
any admissible subset X of E. Horvath in [28-29] has established that
in C-spaces, LC-spaces and LC-metric spaces M, [ € KKM(M,M).
Park [41-43] has shown that when (M, D;T) is a G-convex space, then
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I € KKM(M,M). A similar result has been obtained By Ben-El-
Mechaiekh et al. in [9] for L-spaces.

The above lemma also shows that every AN"R-metric space is a gen-
eralized convex space in the sense of Park [41-43], so by a result of
Fakhar and Zafarani [24] and Theorem 2.2, we have the following the-
orem which improves Thecrems 2.1 and 2.2 of Wu et al. [47].

Theorem 2.9.[2]. Let (M,d) be an N'R-metric space and X be a
nonemply subadmissible subset of M. Suppose that F' is u.s.c., compact
with closed acyclic values, then F € KKM(X, X).

Now, we obtain the following theorem for the ei:i_stence of an approx-
imate fixed point for a wide class of uniform topological spaces. This
result improves Corollary 4.3 of Ben-El-Mechaiekh et al. [9].

Theorem 2.10. [3]. Let (M, M;T') be a I'-convex space supply with
uniform space with basis U. Assume that for each U € U |, there erists
Ve U, V C U such that for each x € M and cach A € (Viz]),
['(A) C Ulz]. Suppose that S : M — M 1is a surjective function and
F e S-KKM(M, M, M) such that clF'(M) is a totally bounded, then F
has an approximate fized point.

Remark. If X is a convex subset of a topological space and V
is a symmetric convex open neighborhood of 0. Then for V, we can
define a ®-mapping 7' as T'(z) = G(z) ={y € X : ¢ —y € V}. Hence
Gr(T) C V, therefore Theorem 2.10 implies that any F' € KKM(X, X)
such that clF(X) is totally bounded has an approximate fixed point
with respect to V. Hence we obtain Theorem 2 of Park [42].

As a consequence of the above theorem we deduce the following
approximate fixed point result for the metric spaces.

Theorem 2.11.[2, 3]. Let (M,d) be a metric space, X be a nonempty
subadmissible subset of M and S : X — X be a surjective function.
Suppose that F € S-KKM(X,X,X) is such that clF(X) is totally
bounded, then F' has an approzimate fized point.

Remark.  Similarly to Corollary 2.5, in Theorems 2.10 and 2.12,
when F is closed and compact, and the space M is Hausdorff space,
we can obtain a fixed point for the multivalued mapping F.

Recently Khamsi [33] obtained an abstract formulation to Sadovski’s
fixed point theorem for continuous functions, using convexity struc-
tures. Here we will obtain an analogous result for multivalued map-
pings which are u.s.c. and have the KKM property.
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Motivated by the concept of c-measure of noncompactness intro-
duced by Hahn [27] for topological vector spaces, we define this notion
in a similar way for a topological space M with respect to a family C of
abstract convexity. Let v be a cone in a vector space with partial order-
ing < and M a collection of nonempty subsets of a topological space
M with the property that for any A € M, the sets coc(A4), A, AU{z},
(z € M), and every subset of A belong to M. Let ¢ be a real number
with ¢ > 1. A function ¥ : M — v is called a ¢-measure of noncom-
pactness with respect to C, provided that the following conditions hold
for any Z € M:

(1) ¥(coZ) < c¥(2);
(2) if z € X, then U(Z U {z}) = ¥(Z);
(4) V(Z) =9(Z).

If F: M — M, then F is called a W-pseudocondensing mapping' if,
whenever U(Z) < ¢V (F(Z)) for Z € M, then Z is relatively compact.

In particular, if ¢ = 1, then F' is called ¥-condensing.

Let M be a topological space and C be a family of closed subsets of
M such that § and M belong to C. We will say that
(1) C has the intersection property(IP) if and only if NA; € C provided
A;eC. :
(2) C has the chain intersection property(CIP) if and only if NA4; € C
provided (A;) is a decreasing chain of elements of C.
Suppose that C has (IP) and A C M, by C(A) we mean {Be€C: AC
B} and C-hull of A as in Example 2.1(a) will be denoted by coc(A).
If C has (CIP), then the subfamily C(A) satisfies the assumptions of
Zorn’s lemma. Therefore C(A) has minimal elements. We will still use
the notation co¢(A) to designate such minimal elements.

Examples. Let (M, d) be a bounded hyperconvex metric space . Set
H={H C M;H # { and is hyperconvex}.

By a result of Baillon [6 ], H satisfies CIP (but fails to satisfy IP, Le.
the intersection of two hyperconvex is not necessarily hyperconvex).
Khamsi [33] has proved that « : 2 — [0, 00), the Kuratowski measure
of noncompactness defined by
a(A) =inf{e > ;A C | J A, A € M, diam(4;) < e}
i=1

is a measure of noncompactness with respect to the family H.

It is trivial that the family A(M) of admissible sets satisfies (IP).
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Henceforth let C stand for a family of closed subsets of M with the
(IP) or (CIP) such that § and M belong to C.

We will say that C satisfies the property (K) (for Kakutani) if and
only if for each C' € C nonempty compact and any F : C — 2¢ which
is u.s.c., nonempty closed values with KKM property with respect to
C has a fixed point. In Theorem 2.11 and its Remark, we have shown
that if M is metric, then the family A(M) of admissible subsets of M
satisfies (K).

Theorem 2.12.[3]. Let M be a Hausdorff topological space and the
family C has the property (K). Then for any nonempty C € CNM, any
w.s.c. F:C — 2% which is VU-pseudocondensing mapping, nonempty
closed values and F € KKM(C,C) with respect to C has a fized point.

As a corollary, we get the following result which improve the results
of Kirk and Shin [36].

Corollary 2.13. Let H be a bounded hyperconvex metric space and
F: H — 2" q closed a-condensing with KKM property with respect to
‘H. Then F has a fized point.

Here we obtain a generalized Fan’s matching theorem for a set with
I'-convex structure. In fact we obtain an open version of Fan’s matching
Theorem which improves Theorem 2.7 of Yuan [48] and is similar to
Theorem 4.4 of Chang et al. [15]. Let us recall that a subset 4 of a
topological space Y is called compactly open, if its intersection with
any compact subsets of Y is open in its relative topology.

Theorem 2.14.[2]. Let (M, D;T) be I'-convex space, X a nonempty
set and Y a topological space. Suppose that S: X — D, T : M — 2Y,
T € S-KKM(X,M,Y) and F : X — 2Y is compactly open valued such
that I T(T(S(X)) ts compact and is contained in F(X). Then there
exists {x1,...,2;} C X such that:

T(C(S{@1, ... 25 }) [ [(MmoF (k) # 0.

As an application of the above Theorem, we have the following form
of the Fan-Browder type fixed point Theorem, see Kirk et al. [31,
Theorem 3.1] and [49].

Corollary 2.15. Let (M, M,T") be a compact I'~convex space such that
the identity mapping I € KKM(M, M). Suppose that R: M — 2™ is a
multivalued mapping with T'-convex values such that M = U{IntR™(y) :
y € M}. Then R has a fized point.
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As an application of the metric KKM principle, we give the following
version of Fan’s best approximation in NR- metric spaces which is
similar to Theorem 2.9 of Kirk et al.[17].

Theorem 2.16.[2]. Let X € A(M) be a compact subset of an N'R-
metric space (M,d). Suppose that F . X — 2M is continuous with
nonempty subadmissible values, then there exists an xg € X, such that

d(zg, F(xg)) = ;Iel)f( d(z, F(zg)).

In particular, if F'(xo) ts compact and xoq & F(zg), o must be a bound-
ary point of X. :

As a consequence of the above Theorem we have the following fixed
point theorem.

Theorem 2.17.[2]. Let X € A(M) be a compact subset of an N'R
metric space (M,d). Suppose that F : X — A(M) is continuous.

Then F has a fizred point if one of the following conditions holds for all
xz € BdX such that z & F(x):

(1) There exists y € X such that d(y, F(z)) < d(z, F(z)).
(2) There exists a € (0,1) such that X N B(F(z), ad(z, F(z)) # 0.
(3) F(z)n X # 0.

Remark. As a corollary of the theorem we obtain that each contin-

uous map 7 : X — 2% with admissible values, where X is a compact
admissible subset of an A"R-metric space (M, d), has a fixed point.
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