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MUST THE VISIBILITY FUNCTION OF AN OPEN
SET BE CONTINUOUS?

M. PIACQUADIO LOSADA, A. FORTE CUNTO, AND F. A. TORANZOS

Abstract. The visibility function of a set S was defined in 1972
by G. Beer. This function evaluates the Lebesgue outer measure
of the star of each point of S. The continuity of this function
for compact sets was studied by its creator. Recently, the present
authors settled the problem of continuity in the boundary of a
compact set S. The question of the continuity in the case where S
is an open bounded set - proposed by G. Beer - is still unsettled.
We show here that the continuity of the visibility function does not
depend on the boundedness of the open set S.
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1. Statement of the Problem.

Unless otherwise stated, all the points and sets considered here are
included in Ed, real d-dimensional Euclidean space. The interior, clo-
sure, boundary, complement, affine hull and convex hull of a set S are
denoted by int S, cl S, ∂S, SC , lin S and conv S, respectively. The
open segment joining x and y is denoted (x y), and the substitution of
one or both parentheses by square brackets indicates the adjunction of
the corresponding endpoints. R(x → y) denotes the ray issuing from x
and going through y. B(x, ε) and U(x, ε) are, respectively, the closed
and the open balls centered at x and having radius ε. If p is a point
and M is a set such that p /∈ M , the star hull of M over p is the set
J(p,M) =

⋃
q∈M

[p q]. More generally, J(A,B) =
⋃

a∈A, b∈B

[a b].

We say that x sees y via S if [x y] ⊂ S . The star of x in S is the
set st (x, S) of all the points of S that see x via S. The visibility func-
tion of a compact set S ⊂ Ed is the function υS : S → R+ defined by
υS(x) = µd (st (x, S)) where ‘µd’ indicates the Lebesgue d-dimensional
outer measure. In a measurable set, the star of a point may not be
measurable, whence using outer measure becomes necessary. As we
mentioned in the abstract, this function was defined and studied by G.
Beer in several papers ([1], [2] and [3]). In [3], theorem 4, Beer charac-
terized the global continuity of υS in terms of the parallel bodies of S.
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One of the authors of the present article (see [4]) characterized the con-
tinuity points of υS in the boundary of a planar Jordan domain S. The
general question of the continuity of this function in the boundary of a
compact subset of Ed was settled by the present authors in two recent
papers ( [5] and [6]). The remaining question about the continuity of
υS is the case where S is an open subset of Ed. Beer suggested (see [3])
that in this case the general continuity depends on the boundedness of
S. We are able to answer this suggestion in the negative sense. The
present note is devoted to the construction of two examples of open
subsets of the Euclidean plane E2, one unbounded and the second one
bounded, having discontinuous visibility functions.

2. The Unbounded Case.

Clearly, this is the easy case. The reader is invited to formulate his
own counterexample. Meanwhile, we present our example, intended as
a sort of introduction to the bounded case.

Example 1. An open unbounded subset Su of E2 that has discontin-
uous visibility function.

Let Q be an open rectangle in the plane E2 and let M be the line that
bissects both vertical sides of Q. Denote x and z two different points of
Q∩M , and without loss of generality assume that the distance between
these points is 1. Denote x1 = z , x2 the midpoint between x1 and x,
and inductively xi+1 the midpoint between xi and x. Hence, the whole
sequence {xi} is included in Q ∩ M and lim

i→∞
xi = x. Let {yi} be the

vertical projection of the sequence {xi} over the upper rim B of Q, and
let ε > 0 be a fixed small number (positive but much smaller than 1).
With these elements we can construct the stripes that will produce the
discontinuity of the visibility function at x. Let B1 be a small segment
included in B and centered at y1 , whose length will be fixed below.
Over this base we build a long and thin vertical rectangle called T1,
that is the first stripe. This stripe is totally visible from x1 but x can
peep only a small triangular region of it, the first nail N1. The area of
N1 depends on the width of T1. Then we can fix this width in such a
way that

µ2 (N1) ≤ ε

2
Furthermore, it is possible to fix the height of T1 in such a way that

µ2 (T1) = 1 .

In the same way, for each positive integer k let us define Bk as a small
subinterval of B centered at yk, and denote Tk a thin vertical stripe
based on Bk, totally visible from xk but such that x can see only a small
triangular region Nk . It is possible to adjust the width and height in
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such a way that

µ2 (Nk) ≤ ε

2k
; µ2 (Tk) = 1

Then, we define

Su = Q ∪
( ∞⋃

k=1

Tk

)

If we delete the outer rim of Su (both in the base and in the strips) we
obtain an open, unbounded and connected set. Besides, we have

νS (x) = µ2 (st (x, Su)) ≤ µ2 (Q) + ε

while
∀k ∈ Z, νS (xk) = µ2 (st (xk, Su)) ≥ µ2 (Q) + 1

Hence, the visibility function of Su is discontinuous at x.

Figure 1. First two steps of the construction of the un-
bounded example: the first two vertical strips and their
nails.

In the previous figure we can see the first two steps of construction
of the set Su with the basic rectangle Q, the first two strips T1 and T2

and the corresponding nails N1 and N2 painted in a different color.

3. The Bounded Case.

We intend to construct a planar open and bounded set whose visibil-
ity function has (at least) one point of discontinuity. The construction
is similar to that in the unbounded case, but instead of the long and
thin stripes we will use certain fan-like sets that we will define later.
Since this construction is rather involved, we divide it into three steps.
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3.1. Open Coverings of a Pathological Cantor Dust. In a pre-

vious paper [5] we had introduced the term pathological Cantor dust
to mean a bounded subset of the line R that has positive Lebesgue
measure and empty interior.The construction of such a set mimics the
construction of the Cantor Ternary Set. In the present case we intend
to obtain a set K such that K ⊂ [0 1] and µ1 (K) = 1

2
. Let us define

K0 = [0 1] and obtain K in countably many steps as follows. K1 is
obtained from K0 by deletion of a centered open interval of length 1

4
.

Hence K1 is the union of 2 closed intervals. Now, if we delete from K1

two open intervals of length 1
42 each, centered in the connected compo-

nents of K1, we obtain K2 formed by the union of 4 closed intervals.
And the construction goes on inductively. Finally, we define

K =
∞⋂

n=1

Kn .

K is a disconnected set and has empty interior. Moreover, the amount
of length cropped off from K0 is

∞∑
n=1

2n−1

4n
=

∞∑
n=1

1

2n+1
=

∞∑
n=2

1

2n
=

1

2

Hence, µ1 (K) = 1
2

. Let us define the gauge of Kn as the length of any
of the 2n closed intervals that composed it. It is clear that

lim
n→∞

gauge (Kn) = 0

Whence, given δ > 0 there exists a first index n such that gauge (Kn) ≤
δ. As we just have seen, Kn is the union of finitely many closed inter-
vals. Let Gn be the union of the same intervals but stripped from
its endpoints, i.e. open intervals. Hence, Gn is an open set and
µ1 (Gn) = µ1 (Kn). Furthermore, Gn almost covers K , i. e. it covers
K with the exception of finitely many points. We describe Gn calling it
an open almost-covering of K having gauge less than δ. If we consider
K included in a line L and located on the Euclidean plane E2, we can
pick a point p /∈ L. The set

Fn (p) = int J (p,Gn)

is the open fan generated by p and Gn . It is useful that we take a
closer look at these open fans.
In Figure 2 we see a picture of F2 (p). More generally, Fn (p) has 2n

blades and 2n − 1 voids. Each of these elements, either a blade or a
void, is a triangle having height equal to the distance from p to L,
and one of the intervals of the construction of K as the base (either
an included interval or a discarded one). Whence the individual and
total area of the blades are completely under control, if we know this
distance and the gauge of Kn. We also remark that these triangles (the



MUST THE VISIBILITY FUNCTION OF AN OPEN SET BE CONTINUOUS? 5

Figure 2. An open Fan generated by a G-set and a point.

blades) are completely stripped of its boundaries, with the exception
of the apex p.

3.2. Building the Open Planar Set. The first steps of our open
bounded set S coincide with those of the unbounded case. The rec-
tangle Q, the line M , the points x, x1, x2, · · · are exactly as in Section
2. Let L be a line parallel to M, located below Q and such that its
distance to Q equals the height of Q. Let us consider on the line L
and located “in front” of Q, a pathological Cantor dust K constructed
as we saw in the previous paragraph. A further restriction on the rel-
ative position of K and Q is that any ray issuing from the points x,
x1, x2, · · · and going through any point of K must leave Q through
its bottom (and not through a vertical side of Q). As we mention at
the beginning of Section 3, we intend to add to Q open fans instead
of the stripes that we had used in Section 2. Denote α = µ2 (Q) and
β = dist (L,Q) = height(Q), by construction. Let ε be a small pos-
itive number (small compared with α and β), say ε = 1

103 inf{α; β},
for example. Now we consider the point x1 and pick a certain positive
number δ1 whose snallness will be determined (by a finite number of
geometrical constraints) in the next paragraph. As we have remarked
above, there exists a positive integer n(δ1) such that Kn(δ1) has gauge
not greater than δ1. Let Gn(δ1) be the open almost-covering of K gen-
erated by Kn(δ1) and denote

F (1) = J
(
x1, Gn(δ1)

)
; S1 = Q ∪ F (1)

In the same way, consider x2 and pick δ2 > 0 small enough, and con-
struct

F (2) = J
(
x2, Gn(δ2)

)
; S2 = Q ∪ F (2)
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The definition of F (n) for each positive integer n follows inductively.
Finally we denote

S =
∞⋃

n=1

Sn

Remark 2. (1) The set S is clearly bounded, since it is included
in the set conv (Q ∪K). Furthermore, it is open, since it is a
union of open sets.

(2) By construction, it holds

∀n st(xn, S) ⊃ Sn

(3) It is easy to verify that

νS (xn) = µ2 (st(xn, S)) ≥ α + 1
3
β

In the next paragraph we intend to prove that the measure of st(x, S)
is a number much smaller than that mentioned in the third item of the
previous remark.

3.3. Peeping. The word “peeping” describes the visibility of a point
of S outside its explicit visual range. In the case of each point xi of the
sequence, the explicit visual range is Si = Q ∪ Fi , whereas the limit
point x has explicit visual range Q. The explicit visual range of a point
is the subset of S that was intended to be visible from this point. But
the points involved usually can see a little more (recall the nails in the
unbounded case). We try to minimize this “little more” in the case of
x to show that the evaluation of νS (x) is clearly less than the value of
this function on the points of the sequence {xi}. Our basic question is:

“What is the measure of the set st (x, S) ∼ Q?”

There are two different ways that x can peep outside Q, by means of
nails or by bridges :

Nails.: This a phenomenon totally analogous to that mentioned
in the construction of the unbounded example. Each blade of
each fan that emerges from the basic rectangle Q has a small
triangle - its nail - that is visible from x. The measure of all
the nails (finitely many) of the fan Fi can be controlled by the
gauge gi = gauge (Gi) where Gi is the open almost-covering
that generates Fi . Exactly in the same way as we proceed in
the unbounded case, we can fix gi small enough such that the

total measure of all the nails of Fi be less that
ε

2i
. Hence, the

total amount of peeping by nails would be less than ε .
Bridges.: The basic difference between the construction of this

example and the previous one is that the stripes of the un-
bounded case were parallel (and pairwise disjoint), whereas the
blades of different fans are not. This generates the possibility
of a different (and somewhat more involved) way of peeping. A
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Figure 3. A ray issued from point x uses a bridge to
pass from one blade to another inside S.

bridge between two adjacent blades Bi
m and Bi

m+1 of the fan
Fi is a portion of another blade, belonging to a different fan Fj

with i < j, that crosses the gap between those two blades.
In Figure 3 we see these elements and a third type of object,

a ray issued from x that uses the bridge to cross from the blade
Bi

m+1 to the blade Bi
m without falling outside S. This is, pre-

cisely, the type of peeping that we try to avoid. We remark
that the three types of elements considered (the blades of fan
Fi, the transversal blade from the fan Fj and the ray issued by
x) have different inclinations, since they come from three points
(xi, xj and x) with distinct locations on a horizontal line. If
the bridge would have been a single segment, then no ray from
x would have crossed the void between Bi

m+1 and Bi
m without

falling out of S. The same happens if the bridge produced by
the transversal blade is narrow enough in comparison with the
gap that it crosses. But the width of the gap is known, since
it depends on the gauge of Fi. For the same reason, the nar-
rowness of the bridge depends on the gauge of Fj. Hence, if we
take the gauge gj small enough with respect to gi, no ray com-
ing from x can cross a bridge produced by a blade of Fj between
two adjacent blades of Fi. Observe that in the construction of
the fan Fj there are finitely many of these constraints, those
produced by the crossing of its blades with the blades issued by
the previous points xi with i < j. Hence, it is possible to fix
the gauge of each fan in such a way that the phenomenon of
peeping by bridge-crossing does not appear.
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Thus, we have proved that

νS (x) ≤ α + ε

whereas (see part 3 of Remark 2) we know that

∀i νS (xi) ≥ α +
1

3
β

Hence, νS is discontinuous at the point x.
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