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KRASNOSELSKY-TYPE THEOREMS
INVOLVING OUTWARD RAYS !

Mabel A. RODRIGUEZ

1. INTRODUCTION.

We know that the kernel of a hunk S < R" can be described as the intersection of the inner
stems of its points of local nonconvexity (theorem 4.3 of [4]). Then it is natural to look for
Krasnoselsky-type theorems to state the starshapedness of S by means of properties which
involve subsets containing finite elements of the set. Helly’s theorem needs to be applied to
the sets that appear in the characterization, and these sets should be convex. Our problem
now is that the inner stems of boundary points are not necessarily convex. To solve this, we
prove what is called a “Krasnoselsky-type lemma” which consists in getting a new
characterization of the kernel of the set as the intersection of the closures of the convex hull
of the inner stems of its points of local nonconvexity. The planar case was solved by F.

Toranzos (see [4]). Finally we obtain the Krasnoselsky-type theorems.

More formally, if S ¢ R" hunk then kerS = ﬂcl(conv(ins(t,S))) . One of the inclusions
: cS

teln
is immediate, then we state the problem in the following way:

Let S c R" be a hunk, x € S. If x ¢ kerS, then there exists t a point of local nonconvexity

of S such that x ¢ cl conv (ins(t,S)).
2.- BASIC DEFINITIONS AND NOTATIONS.

Unless otl:exwise stated all the points and sets considered here are included in R" the real
n-dimensional euclidean space. The interior, closure, boundary, complement and convex
hull of a set S are denoted by: intS, clS, bdryS, CS and convS respectively. The open
segment joining x and y is denoted (x,y). The substitution of one or both parentheses by

square ones indicates the adjunction of the corresponding extremes.
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We say that x sees y -via S- if {x,y] € S. The star of a point x in S is the set st(x,S) of all the
points of S that see x -via S-, a star-center of S is a point x € S such that st(x,S) = S. The
kernel of S is the set kerS of all the star-centers of S. S is starshaped if kerS = &. If S is a
connected set with nonempty interior and x € S, then the set of critical visibility of x in S is
cv(x,S) = intS M bdry(st(x,S)). Each point of this set is called point of critical visibility of x
- in S. A point x € S is called of local convexity of S if it admits a neighborhood V such that
V N S is convex; otherwise it is called of local nonconvexity. The set of all the points of
local convexity and of local nonconvexity are denoted IcS and IncS respectively. R(x - y)
is the closed ray issuing from x and going through y, while R(xy — ) is the closed ray
issuing from y and going in the same direction to that of R(x — y). Given y € bdryS and
x € st(y,S) we say that the ray R(x —> y) is inward through y if there exists t € R(xy — )
such that (y,t) < intS. Otherwise it is called an outward ray through y. The inner stem of y
with respect to S is the set ins(y,S) formed by y and all the points of st(y,S) that issue
outward rays through y. A hunk is a bounded set S such that intS is connected and
S =cl(intS). Let p, q € S, p is said to have higher visibility than q via S if st(q,S) < st(p,S).
A peakof S is apointp € S that admits a neighborhood U such that p has higher visibility
via S than any other point of U n S. Given S < R" and € > 0, we define the outer € -
parallel and the inner € -parallel of S, which we denote S; and S_; respectively, in the
following way S; =B(S, g) = U{ B(x, £) / x € S }where B(x, €) is the closed ball with
center in x and radius € and S_g= B(S,-€) = cl(CB(CS, ¢)). The following lemma has
straightforward proof.

Lemma: 4, M c R", € > 0, then M < B(4, -¢) if and only if BIM, 5) C 4.

3.- BASIC CONSTRUCTIONS.

First we will study in this paragraph some detailed properties of a certain curve and a
“tube” which will be the main tools in our proof. ,

The following analysis is based on the hypothesis of our problem, hence we will assume
that S R" is a hunk, x € S and x ¢ kerS. If x ¢ kerS there exists some point q € S such
that x does not see q via S, i.e. x & st(q,S). The star of any point of S is a closed set, then

there exists X’ € intS such that x* ¢ st(q,S). Analogously q ¢ st(x,S) then there exists q’ €
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intS such that q° ¢ st(x,S). Hence, from the beginning we suppose -without loss of
generality- that x and q are interior points. Since intS is connected and open there must
exist an arc of simple cutve Q < intS that connects x and q. By means of a standard
compactness argument we can obtain € >0 such that Q, ¢ intS. The previous lemma
implies that Q < S_¢ and, a fortiori, X, ¢ € S_¢ but they do not see each other via S_.
Let us define the family 7 = { A/ A arc of simple curve that connects x and g, A < S_¢ }.
It is not an empty family since we have shown Q € 7. Hence we can select I' € 7 having
minimum length. Following Stavrakas’ argument (see [2]) we know that there exist a first
point z; € Inc(S_¢ ) (going from x towards q) and a first point z, € Inc(S_¢ ) (going from q
towards x) such that the first and last spans of the curve are line segments {x, z;] and [z,, q]
respectively.

The geometrical characteristics of S_¢ let us ensure the existence of an interior point q’,
which is not seen by x, such that I" admits the configuration I' = [x, z;) U I_“_l (2, q'1,
where l_':,_ is an arc of a non-degenerated curve, different from a line segment. Without loss
of generality we suppose that the point q is such a point. Notice that we can choose a priori
€ > 0 small enough so that [x, z;) < int(S_¢ ) and (2, q] < int(S_¢ ). Then IT-‘, will be the
only arc of " wholly included in bdry(S_¢ ). ™

We now study some useful properties of the curve I' constructed above.

Propeosition 3.1: Consider the curve I" constructed above, then:
a) 1'_',_ cinc(S_¢).
b) Let be p € bdry(T), and c € T such that p € bdry(B(c, €))
b.1) If p € bdryS, then p € IncS.
b.2)Ifp e lcs, thenc € le(S_g ).
c) (ﬁ)s N bdryS < IncS.

Proof. a) Let us take p € -f,_ and suppose p € lc(S_;). This means that there exists
U = B(p,5) a closed neighborhood such that U N S_, is convex. Let a be the entry point of

IT, into U and b the exit point from U (going from x to q). Since a, b € U n S_¢ which is

convex, it results [a,b]cUN S_¢; < S_. and IT‘l would not be of minimum length.

25



b.1) Suppose that ¢ € Inc(S_¢), then there exist ¢; and c, close enough to ¢ such that
[c1, ¢;] is not included in S_g . If we pick U any neighborhood of p, let us take the points
pi € bdry(B(c; ,€)) N bdryS (i = 1,2). It is easy to see that [p,, p,] can not be included in S

because this would contradict the initial assumption.

b.2) If p € bdry(I), there exists ¢ € I such that p € bdry(B(c,s)) and if p € IcS, then

c ele(S_g) and ¢ € bdry(S_), but then due to (*) ¢ €T, and using ), ¢ e Inc( S_e)
which is absurd. Then p € IncS.

c) It is immediate from 2) and b) &

From now on, we denote T = I'; = B([x, z,), g TDe UB((2y, 4, €) which is a “tube”
included in S, where B([x, z;), €) and B((z,, q], €) are cylinders wholly included in intS,

and (I))e M bdry$ is an arc of curve formed by points of local nonconvexity of S.

4. THE MAIN THEOREM.

Krasnoselsky proved that given a compact and connected set S, S ¢ R", and points x,y € S
such that y does not see x via S, then there exist z € S and H byperplane through z which
separates x from st(z,S) (see [5]). Since the inner stem of a boundary point is included in its
star, the Krasnoselsky separation would be enough for our purposes if we ensure that the

point z of contact of the separating hyperplane is a point of local nonconvexity of S.

Theorem4.1: ScR*,n>2ahunk, x e S,

If x & kerS, then there exists z € IncS such that x¢ cl conv(ins(z,S)).

Proof. We try to find a point z € IncS and an hyperplane H through z such that ins(z,S) is
included in H*, and x € H where H* and H~ are the closed and open half-spaces
determined by H respectively. Immediately we will have the thesis.

As we did in paragraph 3 we can consider x, q €intS such that x does not see q via S and
=[x, z)uv IT U (2, q] the minimum length curve built for a certain € > 0, and we denote
T=B(T, ¢).

As x does not see q via S, x does not see q via T, hence x ¢ kerT, and we know (see [S])

that x is not a peak of T. Then, given any neighborhood U of x, we can always pick some
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point x’e U N T such that X’ sees -via T~ some point that x does not see. Let us take
U =B(x,e) and let x’ € B(x,8) N T be a point such that st(x’,T) is not included in st(x,T);
X' e intS by construction. We pick p € I the last point of I" visible from x (going from x
towards q), and s € I the last point of I' visible from x* (going from x’ towards q);
p € cv(x,8) and s € cv(x’,S). Then, there exist two points of local nonconvexity of S such
thatt € (x, p) N IncS and 'y € (x’, s) N IncS (Theorem 2.1 [4]).

Now we consider ¢ € T such that B(c,g) is the last ball (going from x towards q), entirely
seen from x. Notice that t € bdryB(c,e). Analogously we take d € I such that B(d,¢) is the
Jast ball (going from x’ towards q), entirely seen from x* and we have y € bdryB(d.e).
Notice that by construction ¢ # d even though p = s or not.

We consider two cases:

@) t=y, (see fig. 1. In this figure ¢, = z), d; =2, ).

x sees y because X sees t, but it does not see B(d,e) completely, then the line L(x,y) through
x and y is tangent to B(c,g) at y but pierces B(d,€) at y. Let H be the hyperplane tangent to
B(d,e) at y. It verifies that L(x,y) is not included in it, hence x ¢ H. If we call H* the
closed half-space determined by H in which B(d,e) is included, we have x € H™ . Then the
z wanted is t.

(ii) t # y (see fig.2)

LetbeI', < IT,the subarc of IT, which joins z; and d, and T’ = B([x, z;)u I}, €). By
construction X does not see y -via T’- then, applying Krasnoselsky’s Lemma to x and y in
T’ we have that there exist a point z in bdryT’ and an hyperplane H, through z which
separates x from st(z,T"). It is clear that this hyperplane separates x from ins(z,T°).

We have t, y € bdryT’ M bdryS, then by means of 3.1 (b.1) the arc T, € ITl that connects ¢
and d verifies T'; < Inc( S_ ) and then B(I',, €) M bdryS < IncS.

When we use the Krasnoselsky’s lemma for x and y, that means “pushing” (in the direction
from x to y) a little enough ball external to T’, we get some point z which lies in
bdryT’m bdryS which is -due to 3.1- a point of Jocal nonconvexity of S.

Then we have found H, hyperplane that separates x from ins(z,T’), (the closed and open
half-spaces determined by Hy are denoted Hy and Hy respectively). In this case x € Hy,

ins(z,T’) ¢ Hy and z € IncS. Finally, we prove that H, separates x from ins(z,S). If we

pick u e ins(z,S) notice that:
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a)ifue T thenu e Hf.
b)ifu ¢ T° we consider v € R(u = z) N bdryT’ (the first point from u towards z) and, as

R(u — z) is an outward ray through z, R(v — z) is also an outward ray through z, then

veins(z,T’)andv € Hy,thenu e Hy W

Corollary 4.2: SC R", n > 2 a hunk, then kerS = r { cl(conv(ins(1,5))) / t € IncS }
Proof. <) it follows immediately from the characterization of the kernel of S as the
intersection of the inner stems of its points of local nonconvexity (theorem 4.3 of {4]).

D) it is theorem 4.1. &
5.- KRASNOSELSKY-TYPE THEOREMS.

Theorem 5.1: Let S ¢ R" be a nonconvex hunk such that for every k-pointed set M  IncS
(with k < n) there exists a point p € S that sees each of the points of M and issues outward
rays through these points. Then S is starshaped.

Proof. It is immediate applying Helly’s Theorem (see [3]) to the following family:

7= { cl conv (ins(y,S)) / y € IncS } and using corollary 4.2. ®

Theorem 5.2: Let S ¢ R” be a nonconvex hunk and 8 > 0 such that for every k-pointed set
M < IncS (with k < n + 1) there exists a disk D of radius & included in the star of each
point of M, and such that every point of D issues an outward ray through each point of M.
Then kerS includes a disk of radius 3.

Proof. It is immediate using Klee’s Theorem (see [3]) and Corollary 4.2. 8

Theorem 5.3: Let S ¢ R" be a nonconvex hunk such that IncS be finite and for every k-
pointed set M < IncS (with k < n + 1) there exists a segment I included in the star of each
point of M, and such that every point of I issues an outward ray through each point of M.

Then kerS has dimension at least 1.

This theorem only has sense in dimension 2, case proved by F. Toranzos in [4], because M.

Breen showed in [1] that if IncS is a finite set, then S is a planar set.
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