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NON LINEAR OPTIC AND SUPERCRITICAL WAVE
EQUATION

GILLES LEBEAU

Dedicated to the memory of Pascal Laubin

1. INTRODUCTION AND RESULTS

In this paper, we are interested in the study of the Cauchy problem
for the non-linear wave equation in R3

(11) (O} —A)u+v? =0 u=u(t,z) teR, reR®
‘ Up=o = up(z) € H' NLPTY; Qupeo = uy(z) € L2

Here, p is an odd integer, and the function u is assumed ta take real

values.
The formally conserved energy for (1.1) is
1 1 upt!
1.2 2) = ¥ 2 - 2
0 Bw= [ (Joer v+ L) e

The Sobolev imbedding in R® , H! — LS, leads to the natural classi-
fication in terms of the different values of p

p =1 linear

p = 3 subcritical

p = 5 critical

p 2> 7 super critical

Existence and uniqueness of strong solutions for (1.1) is well known
in the subcritical case p < 3. In the critical case p = 5, the Cauchy
problem for (1.1) has been solved by Grillakis [G] and Shatah-Struwe
[S.S]. We recall here the known global result on strong solutions (see
Shatah-Struwe [S.S] and Bahouri-Shatah [B.S]

Theorem 1. (p = 5) For any (ug,u1) € H'(R3) x L2(R3) there exist
in the space

B= {atu € L®(R, L%,V u € L®(R,L?),u € L’(R, L“’)}
a unique solution to the Cauchy problem ’

5 —
Ou+u’ =0, yp=o = U, Optip=0 = Uy
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Moreover, a by-product of the work of H. Bahouri and P. Gérard
(see [B.G]) gives the uniform continuity of the solution u in terms of
the data (uo, us).

Theorem 2. (p =15) The solution map
(Uo,ul) € Hl X L2—>u€ B
is Lipschitz on bounded sets of H* x L2.

In the super critical case p > 7, a classical compactness argument
gives the existence of at least one weak solution to the Cauchy problem
(1.1), but the uniqueness and the existence of a strong solution for
which the energy identity holds true are still open problems.

The aim of this paper is to show that the local behavior of solutions of
(1.1) in the super critical case exhibits new phenomena. In particular,
we shall verify that the Cauchy-problem is not uniformly well posed in
the Hadamard-sens ; more precisely, we prove that theorem 2 is untrue
in the super critical case (independantly of the choice of a weak solution
to (1.1)).

To get these result we shall study only radial solutions to (1.1),
with conormal Cauchy data with respect to the origin. (We recall that
existence of strong solutions and uniqueness in the radial case is an
open problem).

Following a classical reduction in R, for a radial solution u(t,z) =
f(t,|z]) of (1.1), we introduce the new function g

(1.3) 9(t,p) = pf(t,p) p= 2|

Then, (1.1) is equivalent in p > 0 to the equation
{ (% ~ g+ =0

(14) =1 A p V
Ji=o = g0 € HE N ppH [P*1 | Bygycg = gy € L?

(Here we use the equality H}(R,) = {g € L%. ¢ — g/p € L?}).
The formally conserved energy for (1.4) is

© /1 1 g+
s o= [ (§|3t9|2+§|3pgl2+m> do

which is equal to (1.2) for a radial function u (for ¢ € H§, one has
Jo (g")2dp = J5°(d" ~ 9/p)?dp).

The equation (1.4) is a 1.d non-linear wave equation with a singular
coefficient at p = 0. In particular, we know that (1.4) admits a unique
strong solution in the cone 0 < |t| < p. The following result shows that
the solution map for (1.4), with values in this cone, is unstable , and
in particular not lipschitz from the unit ball of the energy space into
PO < t < |z)).



Theorem 3. (p > 7, odd) There exist two sequences u* = (ug,u})
and v* = (v§,v}) of radial Cauchy data , and two sequences t,, on of
positive real numbers such that

;

support (U,,v,) C {0 < |z| < 0.}

E(u,) <1, E(v,) <1

(1.6) ¢
Jim Mzl *(u, ~v,) ; H* x H*" Y| =0 Vk,s

lim =0, limo,=0.
\ n—oo N n—od

and such that the solutions un, v, of (1.1), in 0 < |t| < |z| satisfy

r7n lim inf [ty — vp [Pz >0 .

=0 t"<l1|

To prove this result, we shall concentrate our study on the case of
smooth Cauchy data in p > 0, with asymptotic expansion on p =0

9(0,p) = go = p[eo + €1p” + - -]
(18)
0:9(0,p) = g1 = p"1~ B[d0+d1pﬁ+ ]
where 4 and § are such that
p—2 p—3
1.9 —_— <
(1.9) p+1
p—3 p—1 p—5
1.10 = e (e
110 s=252 - Exnen 22t
In (1.8), the asymptotic relation f ~ p* i P is assumed to hold in
)

N
the C* sense, i.e., for every integer N, fy = f — o> 10" satisfies
0
&7 ] € O(pe+t NP7y forall j < e+ (N +1)6.

The range of values for « in (1.9) is easely understood : the lower
bound z% < is given by the energy requirement go € H*NLP*, g, €
L? ; the upper bound v < 1’;{% means that we work with super critical

data. Notice that the limit case v = g—:—%— is associated with the self-
similar solutions to (1.4). The inequality p > 5 (i.e. gﬁ < ZL--) insure
the existence of super critical data in the energy space.

The special value of 3 given in (1.10) is forced by the homogeneity
of the equation and will become clear in §2.
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Theorem 3 will be a direct consequence of the following result

[oo] o
Theorem 4. Let ho = o7 Y o™, hy = p?"" 178 dip*® be two given
0 0
asymptotic developpements with (co,do) # (0,0). There exist two cou-
ples of Cauchy data asymptotics to h = (ho, hy)
9= 1(90,91) ~ (ho,h1) 5 ¢' = (96, 91) ~ (ho, h1)

positive constants g9 €]0,1/2) , co, 8o, M0, €1, @ function § €]0, &) = p(d)
satisfying

(1.11) M|Logd|l <« pu(d) « 6 (VM,v)
such that the solutions g,g' of (1.4) with Cauchy data g,g' satisfy
for any § = 6, = 27", n large
(g — 9')(ts,0)| 2 pYe1l| cos(B)| — 2] Vp€ L
(1.12)
ts = 8"Pu(8) ; Is = [0 — 25,6+ 28]

In particular, theorem 4 shows that the asymptotic of the Cauchy
data at t = 0 doesn’t determine the asymptotic of the solution on ¢ = 0,
even in the case of conormal pointwise singularity.

The paper is organized as follows :
In §2, we use a scalling reduction in order to work on a semi-classical
non linear wave equation with a small parameter h, of the form

' F
(1.13) P07 — Ag)u+ %E(x, u)=0
with suitable non linear potential F', and cauchy data
oC
u(0,2) ~ 3 hFay(z) , ar € C®
0
(1.14)
X
howu(0,z) ~ > h¥by(z) , by € C®
0
We then recall the optical Ansatz associated to (1.13), (1.14) (see
Whitham [W]), and we discuss the associated anharmonic oscillator
on L2(SY)
i d

(1.15) | o*(55) |

In §3, we solve the whole hierarchy of equations associated to this
optical Ansatz.

In §4, we discuss the linearisation of the equation (1.4) at the for-
mal optical solution, and the occurence of instability intervals in the
associated Hill equation.

OF
+ a—(.’l), )



Finally, in §5 we conclude the proof of theorem 4 by non linear
perturbation arguments.

Proof of theorem 3 :

To end this introduction, let us show that theorem 4 implies theorem
3. Letx € (’0 (- 1/2 1/2[) be equal to1on [~1/4,1/4],
Iy=1[6~ ”(6),6 + 28], L] = u(o Let g;, g be the solutions of the
Cauchy problem (1 4) with data

a1g) | 900 =xUEDI0.0) :650.0) = x(F) 0.0)
‘ 8,95(0, p) = x(£)8,9(0. p) ; 8:95(0, p) = x(51)0:'(0, )

By finite speed of propagation, one has

(1.17) g=gsand g’ = gg on the set |p — 4] < %IL;[ — |t

The difference of the Cauchy data satisfies

(1.18) (g5 — 95)(0, p) and (8:gs — 3:g5)(0, p) is O(6*) in H* for any s
The energy of g5 (and g;) is equal to

(1.19) E(gs) =
! 5
[ Glastx +

0

with x5 = X(%_f)

JFrom v < =2 _1, and |Is] > 8" (Vv > 0), we get
| L] g+ )= (o= 5 > |I5]716%". Thus we have
(1.20) E(gs) ~ E(g;) =~ |L)6" PV D

Let a = %:—f and u, 4, u_ 5. the solutions of (1.4)

gp+ p+1 1 a 4o ( ) 2
ot L6 T3 %It 1 AR

1.21 “f»é(t’ p) = E:Zlgé(st,ap)
(20 { ug 4(t, p) = e7%g5(et, ep)
.One has

(1.22) Blues) = e E(gs)

Let £5 be such that €}~22|/;|57@+)-(P=D x 1.
We have 2a — 1 =222 > 7(p+1) —p + 2, so we get

(1.23) <K g5 ‘lsinéag =0
Let u; = ue, 5, and define u} in the same way. Then we have

Blug) = E(uf) ~ 1

(1.24) lim |~ Flus —uls) s H® X HS-1|| =0 for any k, s
Support (3&5:@:5) c {lp - | = #(0) 56}
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Let J; = {|p — 8] < 3|I5] — |t|}. We have t; = §'+Ppu(d) < |Is], so

|J5] = |I5]. Thus we get using (1.12),for § = &, = 27", n large and for

some ¢ > 0

Juo, B dp > el [, Lot enlgp

(1.25) %
> 265;—204IJ6Iéw(p+1)~—(p—1) >c

QED.

2. SEMI-CLASSICAL REDUCTION

In order to study the solutions of equations (1.4) with Cauchy data
(1.9), we introduce new coordinates and unknown fonction

{ t=hs, p=hr h=h

(2.1) g(hs, hx) = B fa(s. )

Here E]z’;—f , ;Lj[ is a fixed constant, 3 = &;—3 - (Eg—l)'y and h €]0,1]
is a small parameter. Then f = fj satisfies the semi-classical non linear
wave equation

P
A
Pt

(22) h*(0F ~ ) f +
and the Cauchy data for f are deduced from {1.9)

20
f(0,2) ~ 20 3 AFerat?
23) 7
hOs fn(0,z) ~ it > hkdya*®
’ 0

We shall restrict the study of the Cauchy problem (2.2}, (2.3) in a small
neighborhood of s = 0,z = 1 ; it means that we are looking for values
of g(t, p) in a small conic neighborhood of the segment t =0, p €]0, 1]

The parameter A = h'/? is then equivalent to the distance to the
origin (¢, p) = (0,0).

o0
In (2.3) the asymptotic relation f, ~ > hfax(z) means that there
)
exist a fixed neighborhood W of z = 1 such that
102(fa — 5 Hoax(@)) =) € O(BY*) for all j, N

We shall introduce a non-linear optical ansatz to treat the Cauchy
problem (2.2), {2.3). At this level, it appears more conveniant to
study the following general local Cauchy problem, witht € R, z €



RY, (¢, z) ~ (0,20)
(- RO -A)u+E(z,u) =0, u=u(tz) €R

U

o0
0,z) ~ Y h¥ar{x) ar € C®,up(0,2) € C®
24) ux(0, ) % ar(z) ax up(0, )

(o
hByup(0,2) ~ Y R*be(z) b € C, hOuy(0,z) € C*
\ 0
where F(z,u) is a smooth function of z € R , u € R defined near
T =To, u=1u = ag(zg). The formally conserved energy for (2.4) is

25) E() = / {ﬁ;-(latul2+lvxu|2)+}7’($,u) da

By classical results, we know that (2.4) admits a unique smooth solu-
tion in a “small” interval {|t| < C*h}. The optical ansatz is a tentative
to extend this solution to a “big” interval {|t| < C?¥} (as we shall see
later, these tentative breaks down for “almost all” Cauchy data...)

The starting point of non linear optics is to search u(t, 1) as a formal
asymptotic expansion (see Whitham [W})

(2.6) un(t, z) = Dolt, 2, ‘P(i; 24 ; KT, 2, /)

where U'j (t,z,6) are smooth fonctions, 2n-periodic in the & variable,
and with an unknown phase function ¢(¢, ) encoding the oscillations
of the solution, such that

2.1 0(0,z) =0

It is easy to see that § — ﬁo(t, z,0) must then satisfy the ordinary
differential equation

: ~ OF, =~
(28) (2 = 1V20)800 + 5 (2,0) = 0
so0 it is natural to make the assumption (we may use the phase sym-

metry 8 — —6 in (2.8))

(2.9) %t?i(o,xo) >0

We can view (2.8) as a fibration of the phase space
T*(R; x RE) N {|r] > |¢]} by an anharmonic oscillator

(210) P+ (nf) =0 o= (-
for which the conserved energy is
.12 B= L\ + Faf) . 2o

: - 2 [’} ¢ ’ ) 39 =
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and where we consider ¢ > 0, £ ~ xo as parameters. In view of the
Cauchy data (2.4) of u, we have

(2‘12) Up ~ Qo0 = ao(Z'o) h@tuh ~ bo,() = bo(il:o)
so we work near the energy level

b2
(2.13) Ey = -%9 + F(z0, a0,)

The first hypothesis we make on the function F will make sure that
{2.10). admits periodic solutions.

The connected component of agg in {F(zg,u) < Eo}

(H1) is of the form [u%,u ] with
9E (20,u2) < 0 and 4 (zo,ud) > 0.

If (H 1) IS satisﬁed then the ordinary differential equation on the
line ——é + % (2o, f) = 0 with Cauchy data f(0) = aoo, f(0) = boo
adrmts a perlodlc solution with period II{zo, Fp) with

(z.E)
| { (e, E) = V2 [ &= F(a: R
F(z,us(z,E)) = E , us(zo, Eo) =ul

The second hypothesis we made on the function F is that the fre-
quency of the solutions of the equation d—yé -+ %g(xo, f) =0 is a strictly
increasing function of the energy parameter

(H2) (270, EO) <90

8E

Remark 2.1 In our case, we have F(zo,u) = —2£ 1 so (H.1) is

(p+1)xg
satisfied iff By # 0, Le. iff
(2.14) (0,0, 0,0) # (0,0)
and I(zo, E) = (&) )or \/—f S Gt aPtl = p+1so (H2)is
satisfied.

If (H.1) and (H.2) are satisfied, the equation on the line, with o
closed to oy, such that ooll{zo, Eo) = 27

2d§f+ (w =



with energy E closed to Ep, and with values f(8) closed to [u®,ud],
admits 2m-periodic solutions iff ¢ and F are related by

(2.15) oli(z, E) = 27 (Normalization)

and in that case, the space of solutions is a circle parametrized by a
phase-shift © € [0, 27|

Definition 2.1. For (o, z) closed to (og, o), let

(2.16) K(o.z;9)

be the 27-periodic in 6 solution of 028K + 4 (z, K) = 0 such that,
with oll(z, E(o,2)) = 27

K(o,2;0) = uy(z, E(o,z)) ,

(2“17) aK(U T 0) =0

This fundamental solution K (-;8) is even in 8 (K (-; —8) satisfies the
same differential equation with the same data at 8 = 0), and we have

(2.18) 5’;@91{@ O)2 + F(z, K(-.0)) = E(o,z) V8

For a 2m-periodic function f(6), we shall denote by § f = = f02 " f(6)do
its mean value, and we define the function J(o.z) by

(2.19) J(o.2) = %%]091{'(0, ;)

Finally, we introduce the linearized equation at K :

8*F .
(220) [’(02)(.]) = UzaeJ + 57 Ou2 (‘T? K("? Z; 9))9

Lemma 2.1. i) £, is self adjoint on L*([0. 2n]), and the 2m-periodic
kernel of L) is the one dimensional subspace span by & 39 (0’,.L 3
it) The unique solution of L(W) = 02K, orthogonal to 9% ao 18

(2.21) W= 20'3 +3 (=, )39 = 4an{ ‘B0 80

Proof :
i) Let us denote by f(o,z, E,y) the solution of 02d2f + (m =
such that
f(U,w E,0) —u+($' E) F(z,uy(z,E)=E
ay (0,:1" E.0)=
Then, both 55 and 5% satisfy the second order equation on the line
2%2 -+ gif (z, f)g = 0. The fonction f has period T = oli(z,E). By
assumption (H.2), we have aE(oo,xo, Ep) #0s0 3 (00, Zo, Eo; +) is not
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a 2m-periodic function, and the kernel of £,z on 27-periodic functions
is thus spaned by %5(0, z, E(o,z);.).
ii) One has £;4)(%E) = —2003K,, so ii) is obvious.

Lemma 2.2. Near (gq, o), the following inequality holds true

oJ
(222) J+ 0'% >0

Proof : One has 2(J + 0¥%) = §(8,K)? + 2003 ,K.0 K
= f (0o K)? ~ 4020V K = 7{ (o K)? + 20°[VOIK — 05V O K]
with V = —1/20%%.

Let g = 9yK ; Using L(g) = 0, L(V) = Oyg, one easely verify that
g% +20%(V¢ - V'g) is independant of 8 ; therefore, we get
aJ 19K, OF

2(J + 05;) =20*(VK")po = ;‘a—a—lho%(z, uy)

We have %i():o = %";:t% (by 2.17) and 2.22 follows from %’% > 0 and

from (H.2), since oIl(xz, E{o,z)) = 27 implies Ug—f = “B'rl'/uéTE' >0
Remark 2.2. If one starts with a linear equation
2dif+V(z)f =0

then the normalization ¢II(E) = 2, gives 0 = V(z) which is exactly
the eikonale equation for the phase : 2 = |V 2|2 + V(z). The space
of 27-periodic solution is then 2-dimensional. In the linear case, we
have thus a 2-dimensional fibration over the caracteristic variety.

In contrast, in the non-linear case, we have a 1-dimensional fibration
by circles, parametrized by a phase shift @, on the open subset of the
cotangent space {|7| > [¢]}.

In the linear case, the first asymptotic term is Re(ae®*/*), a = |aje’®,
and the energy, which is free is given by E ~ V(z)|a|?, so the natural
parameters are (F,©). In the non linear case, the natural parameters
are (0, ©), and we recover the energy by the normalization oIl{z, E) =
2.

3. NON-LINEAR OPTIC

In this part, we shall study the formal asymptotic solutions of the
form »
w(t )

(31) ’U,h(t, Z) = ﬁ/l(t, z, fT)



for the Cauchy-problem (2.4), under the hypothesis (H1), (H2) of §2.
We have thus to study the asymptotic equation in &

( (¢ ~ [Vap?)830s + SE (z, Uy)
+h[2gotat V49V, + g0, + £200), = 0

(3.2) Un(0,,0) = thak

85U (0, 2,0) + h&,U(0,z,0) = Eh’"bk(

\

with O = 87 - A,. In (3.2), we search Uy as a formal power serie in h
x

(3.3) Un(t,2,0) = Y _ h¥Ui(t,,6)
0

We introduce a phase-shift ©(¢, z), and we define Uj, by

(3.4) Uk(t, z,0) = Up(t, 2,0 + O(t, ))

‘We make the choice

(3.5) Uo(t,z,0) = K(0,2,0), 0= (o~ |Vao|)"/?

where K is the fundamental solution of 0?92K + % (z, K) defined in

§2.

Let us define the collection of function @,(z, ug, -+« ,un) by the iden-
tity
(3.6) - —af(xihku)—ih"Q (z,u0, * ,Un)
> 611, 4 0 k) = - n\w, U0, s Un
We get by the taylor formula
(3.7)
Qo(z, uo) = & (2, u0)

Q1(z, uo, ) = Z—F(x up)uy

Qnlm, ug, <y Uy) = ‘Zsz(x, U Un + Ry (T, up, +» yUp1) N2> 2
where the R, functions are given by
(38)
R2 = —1'8 F(.’L‘ ’UO)
R; = uluQa F(z,up) + 484F(x up)
Ry = (3u} + wyus) 03 F (z,u0) + 3 u1u284F(ac ug) + Ra(z, ug, u1)
Rp>s = (UQUn 2 + Utn-1)02 F(x up) + 2u1un 20LF (2, up)
+R(z,up, ) Un—3)
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(The precise structure of the functions ﬁn(az, Ug, "+ 5 Un—3) Will play no
role in the sequel).

If we denote by T' = 2,0, — 2V oV + 0y the transport operator, the
first equation in (3.2) is then equivalent to the hierarchy of equations,
with 02 = @2 ~ [V,p[?

(Eq)o 02830, + Fl(z,Uy) =0
(Eq) 0253(71 + F,(z, Uo)Ur + T30 =0
(EQ)kz2

a2c‘9§l7k + F;’(.’I,‘, ﬁo)ﬁk + Ry(z, [70, o ,ﬁk--l) + Taofjk_l + ijk._g =0
Moreover the Cauchy data are given by
Ux(0,2,0) = ax(z) Vk>0

(3.9) < ©4(0,2)(8sU0)(0,z,0) = bo(z)

£4(0,7) (3 T) (0, 2, 0) + (8T_1)(0, 2,0) = bi(z) VEk>1
We have Up(t, z,8) = K(o,z,0 + ©), so (Eq)o is satisfied. Let Z be
the vector field
(3.10) Z = 24,0, — 2V,p.V
We have 0,,[f (2,8 + ©(2))] = [(9;,f) + ©.,(8)](2,6 + O(2))} so if To
and g are the operators
(3.11) To =T+ Z(©)0

' Oo = (8 + ©,8)* — Z).(c‘?zj + @;j63)2

We can rewrite (Eq) k > 1, and the equations for the traces on ¢ = 0,
as equations involving {Uy}, using (3.4), with £ = 028} + F/(z, K)
(Eqh L(U) +TedUs =0

(Eqlk>2  L(Up) + Re(x, U, ,Ur—1) + ToOpUp—1 + OeUi-2 =0

U(0,2,0(0,2)) = ax(2)
(3.12) ©4(0,2)8Us(0, 2, 0(0, z)) = bo(2)

()0;:(07 SK)(ank)(O. z, 6(0’ 1"))
+(0Uk-1 + ©,,(0,2)0Us~1)(0, 2, ©(0, z)) = bp(x)

For each k > 1, we will decompose Uy according to the splitting

L2(S}) = (KerL) @(ImL)

Ui(t, z,6) = \(t, 2)0p K + Vir(t, z, 6)
FVidpK =0

We are now ready to study the optical hierarchy.

(3.13)



Level 0
(Eq)o is satisfied by construction. By (2.9), (2.11), we have Oltesp =
Phje=o and

2
(314) B(opm®) = 22 4 Pz, an(z)
From aH(:r:, E) = 2m, we find

(3.15) (0 z) = (2m){l(z, ég(;—)z- F(z,a0(z)))} ' = 0(0,2) > 0

..\Ioreover, the data equations

K(O’lt:O: Z, e) = (1()(1')
01t=006K (0}1=0, , ©) = bo(x)

admits a unique solution © = ©(0,z) by the assumption (H.1).
The two data (0, 2) and ©(0. z) are thus determined.

Level 1
We have U; = MK + V4. and
(3.16) L)+ TedeK =0

is solvable iff §(T + Z(©))(0sK)(9sK) = 0, which is equivalent to,
with J = 1 § | K2

(3.17) 30 — Voo V(J) + 0O = 0

In other words, the phase > must satisfy

{6;[”] div[(Vy)J]

(3.18) o= (22— |Vo2|2)2: J (o, 1) =1416,K(0.2,.)?

The identity 02 = ¢}? - |V,o[? allows to rewrite {3.17) in the form of

a quasi-linear second order differential equation for the phase ¢

95 J 2292 . o 0 N 3’9 Py ¢ Op B%p
(3.19) T{ £Op = 2% - Bwlaz-at_*_zaz,amk@x oz

=V VoJ + '](U)[ o~ D] = 0

with data wy=¢ = 0, 9’;“:0 = O}50 > 0.
The restriction of (3.19) on ¢ = 0 is equal to

(3.20) (J(0) + 0 22 (00 = (o) Az

which is (by lemma 2.2) a strictly hyperbolic equation in time. There-
fore, the phase function ¢ is uniquely determined by the equation
(3.17) in the vicinity of (t,z) = (0,20), and the £ operator 0297 +
F(z,K(0,z,8)) is known.
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Remark 3.1. We can also rewrite (3.18) as a conservation law for the
unknowns p = V0, ¢ =y¢}J

P ' 8tq = le(pJ)
3.21
(321) {m=mwn
We have U; = A9y K + Vi, where V] solves
(3.22) LWVL) +T(8K) + Z(©)0K =0

So if we denote by £~! the inverse map of £ on (ker £)*, we get, with
W = L7YJ2K) (see lemma 2.1)

(3.23) Vi = L HT(5K)) —~ Z(©)W
Let us denote by
(324) 00(2) = Fije=g 5 Oo(x) = B0

the two Cauchy data determined at level 0. By (3.12), we get
(3.25)
{ U1(0,z,00) = a1(z)
O'anUl(O, z, @o) + @;(0, 1)891{(0, I, ) = bl(d,) - 8t[i(0 xz, (")0)
If one use Z(O) =0 = 20094(0. 1), and Uy = \9pK — L~HT(8;K)) —
Z{©)W, we obtain that (3.25) is equivalent to a 2 x 2 system for the
unknown A;(0, z), ©;(0, )

(3.26)
WK —20W s N ES(UE )
(_aagx' —2020,W + k| (8= 0:%:0 =©0(z)) [9;(0, r)| T even

The determinant of this system is equal to 93K + 202(W,(9K) —
BWHK) =2(J + U%ﬁ) # 0. (by the proof of lemma 2.2).
The two data A;(0,z), ©;(0.x) are thus determined

Level 2
We have Uy = A0y K + V3 with

1
(327) E(Vg) + -2-U1202F(1E K) +To0Ur + e K =0
Using U; = M\ 0K + Vi, we get the integrability condition for (3.27)
(X §BF(z, K) (0 K)*+

(328) 4 $ [/\ﬂflaeK'()ﬁF(x, K)+T()\183K)+/\IZ(@)63K']80K+

$ [%‘2'321’(%, K) + To(0V1) + D@K] 9K =0
\

(From L{9,K) = 0, we deduce
(3.29) LK) + O2F (2, K)(9pK)? =0



so in (3.28) the quadratic term in A; vanishes, using the identity
(3.30)

}{ BF(z, K)(8yK)200K = — }{ LBK)OK = — }{ RKL(BK) =0

We have T(MO5K) = MT(83K) + Z(M)ZK, and § 33K8,K = 0, so
the second term in (3.28) is equal to

(3.31) N f Vi(OsK)?83F (2, K) + T(2K)0p K + Z(©)83K 0K

Y }4 (—~L(A)EK + T(GRK),K — 2(0) (2K’

which is equal by (3.22) to
=M $[T(0:K) + Z(©)O3K|2K + T (8} KOs K — Z(0)(82K)?

= MZ[$ HKOBK] =0

Therefore, the integrability condition (3.28) does’nt depend on the un-
known function A;. We have
(3.32)
. V2 , 172
{ $F03F (2, K)pK = § Lop82F (z, K)] = — $(86V1)ViO2F (3, K)

=—§0Vi[L(V)) = *0jVi] = ~ § O VIL(VL) = § 0pViTo (06 K)
and
(3.33) o = O+ (m@)é‘%m(@;@ —(V,0)V.)
Therefore, (3.28) is equivalent to

Vi) To (80K + To(05V3)0s K
(3.34) { f-(fmxajxi {)2(943 Z(V,0)V, + 00} §(8K)? = 0

By (3.23), we have V] = —L7YT(9,K)) — Z(©)W, so (3.34) is a dif-
ferential second order equation for ©. The non linear part in © of this
equation is equal to

]( —Z(OPOWEK — Z(OY W E,K =0

0

(62~ IV.01)5

so we conclude that (3.34) is in fact a linear second order partial dif-
ferential equation for © ; the principal part of this equation is

(3.35) 0o j! (K2 - 2(2(6)) 7{ QWK
By lemma 2.1, we have § W& K = g—}%, so the principal symbol of

(3.35) is equal to

36) 27| =)+ 220 - ety
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By lemma 2.2, we conclude that (3.34) is a linear second order hyper-
bolic equation for the phase shift ©.

Moreover, the data O and 9;O=¢ have been determined at level
0 and 1 respectively, thus the phase-shift function ©(t,z) is known.

We have Us = 03K + V, and using (3.27), we can expressed V; in
terms of the still unknown function A;.

‘/2 = )\%(Z + )\1() - Z()\l)W + H2
(3.37) 6= —L M 183F (z, K)(%K)?] = 183K
b= ~L Y O3F(z, K)VidpK + To(83K)]

where H, is independant of \;, and known at this level,
The Cauchy data relation (3.12) at level 2 is
(3.38)
UQ(O, z, @0) = ag(.’lt)
00(9pU2)(0, 2, ©9) + (B:U1 + ©4(0, x)3sU1)(0, 2, &) = ba(z)

We have U = X85 K +V; where V] is given by (3.23) and thus is known,
and Ajjs=o has been determined at level 1 ; we have Uy == MOy K + V3,
where V5 is given by (3.37), so Vi + 2000;A1Wj¢=¢ is known. From
these facts, we conclude that (3.38) is a 2 x 2 system for the unknown
/\2|t=07 83/\1“:0, of the form

(3.39)
O K —20W o Mapmo |
[0631( —20%0,W + G K (t =0,2z,0 = Gy(z)) [at/\m:()} = given

This is the same system as (3.26) ; the two data Ag=o , GtAie=o are
thus determined.

Level 3
We have Us = A3 K + V3 with

(3.40) c(x@,)+%Ufa;§F(x, K)+UsUs3 F(z, K)+To(0Uz)+0ols = 0
Using Us = A8 K + Vs, we get the integrability condition for (3.40)

(3.41)
§ Z(0)BKBK + [To(BK) + U(BpK) O3 F10sK
+ ${LUROLF (z, K) + U Vad3 F(z, K) + To(9sV2) + DeU1}06K = 0

The first line of (3.41) vanishes [by (3.29) it is equal to
Ao § To(B3K)0K — L(V1)O3K = 0, see (3.31)]. Therefore, (3.41)
doesn’t depend on Ay, so is an equation for A;. By (3.37), this equation



has the following structure

(342)

(N} $2(0eK)3OLF + adp KOEF)0s K

+MZ(A1) § 205005 K — (0K )*WEEF

'i")\? f{-ﬁ-(ﬁgK)?V]&ﬁF -+ ((1V1 + bc?oK)ﬁffF + T@(c%a)}agK

+0X $(8K)2 = Z(Z(\y)) § WK

| +(Linear first order operator) {A;) = given
In (3.42), the first term vanishes (a is given by (3.37) :
(3.43)
$ §(0K)*OLF — aL(O3K) = ¢ $(OpK)'OLF + O3 F (83K ) (0o K)?
= 1§ Q[(AK)POIF] = 0
The second term in (3.42) vanishes also :
§ 200009 K — (O K)*WOF = § B3 KO K + WL(5}K)
(3.44)

= § BKOK + LIW)RK = § BKOK + BKRK =0

Finally, we get that the third term, in front of A? vanishes too ; in fact
this term is equal to, using (3.37)
(3.45)

v = ¢ LV(BKSFOK + 51 F(8,K)) — bl (82K) + Te(%agx)aox

- f %Vl(30§K0§F891{+6§F(89K)3)+Te(agk’)agK+T9(%82K')89K'
iFrom L(GGK) + (82F)(9sK)* = 0, we get

(3.46) LK) + (0IF) (0K + 30K P FOK = 0

We have also L(V}) = —Tp(0pK), so we get

‘= ]{ %[T@(%K)agk + To(BK)0K] + To(02K)O2K

- j{ % [T(@K)OLK + T K3 K] + T(RK)OLK

-1z f (B K )(B3K) + (2K)? = 0

Therefore (3.41) is a linear hyperbolic equation for A;, with principal
symbol (3.36) as before. We know that the Cauchy data Aljg=o and
(O:A1)ji=0 are determined at level 1 and 2 respectively, so A; is known.

As in level 2, we find that the data equation (3.12) with k = 3 gives
Asjt=0 and OrAgp=0
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Level 4
We have U = M0, K + V, with
(3.47)

1 ~

L(Vy) + (§U22 + U1 Us)03F(z, K) + -%UfUzaﬁF(x, K) + Ry(z, U1, )
+'T(-)(aoUs) + el =0

Using Us = A\39,K + Vi, we get the integrability condition for (3.47)

(3.48)
Z(Xs) § BBKOGK + Xg § V13K OSF + To(O3K)Op K

+§ [(3U2 + VU0 + JURU04F + B + To(@3V3) + Dol | 80K

=0
The first line in (3.48) vanishes, due to
X3 § ~L(U)OEK + To(0;K)0 K

(3.49) = X3 § To(0K)ORK + To(K)0K

=X\sZ $§ BKO}K =0
By (3.40), we get
(3.50) Vs = =Z(A)W — ML U0 KOSF + To(93K)] + Hs

where Hj is independant of Az, and is known at this level so V3 depends
linearly on Ay, and therefore, (3.48) is a linear equation for Ay (we have
A3 §(8pKPO3F.0pK = 0), and the principal part of this equation is
still Thg $(0eK)? — Z(Z(N9)) $ WK, as in (3.35). So we conclude
that (3.48) determines Ap. ,

As before, the data equation (3.12) with k = 4 determines A= and
O¢Azje=0-
Level k> 5

We get for Vi, = U — A0 K the equation

(3.51)  L(Vi) + Ri(z,Uo, -+, Ur—1) + To(0pUs-1) + Uelr—2 =0
We have Ui_1 = A\p183K + Vi—1, and
(352) Vier = —Z(Meg)W =MLt [U10sKLF + To (85 K)} + Hi-1
where Hi- is independant of A¢_o, and is known at this level. By
(3.8), we have

Ry, = (UUy-1 + UsUy—2)3F + %Uka--zaiF + Rz, Ur, -+, Ups).

So, as in level 4, we find that the integrability condition for (3.51), is
independant of A1, and gives a linear second order equation for Ap—2



with principal symbol (3.36). Using also (3.12), we conclude that this
level determines

(3.53) A= s Mkje=0 5 OtAk-1li=0
and gives also the relation
(354) Vi=~Z(Me-))W — Neo1 L7 [U18, K OEF + To(8;K)] + Hy

where Hj is known.
;From all this fact, we obtain

Proposition 3.1. The formal Cauchy problem given by the hierarchy
(BEx)xzo and Cauchy data (3.9) admits a unigue formal solution of the

form (3.3), (3.4).

4. LINEARISATION AND THE HILL EQUATION

Let g = (g0, 91) be a couple of Cauchy data for the non-linear equa-
tion (1.4), with asymptotic developpements

go~ p" E p™ 5 gu~ prIF dep’“”
(41)

(co, do) % (0,0)
Let us denote by

(4.2) w(t,z) = Zh Uslt, ) +0(t,z))

the formal optical solutlon of the Cauchy problem near (¢,z) = (0,1)
(see 2.1, 2.2 and section 3)

RO — BR)u+ 25 =0
(43) u(0,z) ~ i "go(ha) (h = hP)
hdu(0, z) ~ K710 g, (hx)

The homogeneity of the problem (4.3) shows that wy(t, ) must be of
the form

(4.4) up(t, z) = K "w(ht, hx)

Moreover, the phase function (¢, z) is odd in time, and homogeneous
of degree —f3, and the phase-shift ©(¢, z) is homogeneous of degree 0

t,z) =xPP(t/x) , ¥ odd, C®
(45) { g((t ?) _ (t/a(:)/xll € o

Let K (o, ,0) be the (2r) periodic solution of 0203 K + ;f% = 0 intro-
duce in deﬁmtlon (2.1). We have

(4.6) K(0,x,8) = 2071G(6)
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where G(8) is the unique 27-periodic solution of

(4.7) G"+GP=0;G(0)=0, GO)>0

The two constants ¥'(0) > 0 and A(0) are given by

48) { (v (o»j (40) = o
(¥'(0))>=1G'(A(0)) = do

By (4.4), the asymptotic structure of uy, is of the form

49wtz = Z(h B Y+ Ate/)

and we have z7Fy = 2(i02 — ¢2)F1G(/h + ©).
By the Borel sommation lemma, there is a smooth function F(e, u, §),
defined for ¢ € [0, 1],u ~ 0,8 € S, such that

(4.10) F(e,u,8) ~ iaka(u, 8) (e—0)
0
Let us define the function f(t,z) by
GI) ) =S F (Aol )+ Ae)

Then, by construction, this function satisfies the Cauchy problem with
flat right hand side

UsZP _ p2428-YR(ha, t/x)

R*(82 — 32) 4
(4.12) £24(0, ) = B~7go(hz) = h~7ro(ha)
RO, FF(0, z) — K- Vt148 g, (Ax) = R+ 1Py, ()

where the functions R(p,u),76,1(p) are smooth in p € [0, 1], u closed to
0, and flat at p = 0, with all their derivatives.

Let w(p) = (wo(p), w1(p)) be a couple of Cauchy data, flat at p=0
with all their derivates. Let v,(t,z) be the solution of the Cauchy
problem near t = 0,z = 1, defined for h €]0,ho], ho small

h2(8? — 32)up + 28 =0

(4.13) vp(0,2) = B~ [go{fiz) + wo(hz)]

RO (0, z) = A" *B (g, (hx) + wy (hz)]



Let wa(t, z) = vp(t, z) — f‘,‘f"t(t, z). Then, wy(t, z) satisfies the Cauchy
problem, with ¢ = (99;2 - 99;2)]/ 2

h2(8F — OZ)wy, + pa*GP~Hp/h + O)uwy,
+N(h,t, 2,2 + O;wy) = ~R***#~TR(ha, t/z)

(414) wh(0,2) = A~ fuo(Az) - ro(ha)]
h&ywp(0, z) = A~"F18w, (hz) — r1(hx))

where the perturbation A is defined by

id optyp— wy -
(415) N = == (P~ - (@"Fo) ™) +pr'w<p e

In order to study the Cauchy problem (4.14), we make the change of
variables

t' =t z)
(4.16) z' = alt,x)
\PQ%% - Vég_; =0; a(0,2) =2"

The functions ¢, a are both homogeneous of degree —8 in (t',x), pis
oddint, aevenint, and (¢,z) — (¥,7') is a diffeomorphism near (0, 1).
Let o, ¢ be the two functions

(4”17) o= (¢;2 _ \,’0;2)1/2 g= (a;2 _ a;2)1/2

The wave operator O = §2 — 8?2 in the new coordinates (¢’ z') is given
by

(418) 0= 042 (7 0r) — 0402 (200
Let b= —%log(co/q). Then we get
: 2
(4.19) e?e? = ¢? |02 — -3—563, +q(t, )0 + (', z)

where the ¢; are homogeneous of degree —j in (¢/,z). Let B be the
function defined by

(4.20) B(t'/z) = A(t/)

We introduce the unknown @, (t',2') = e %wy(t,z) ; on the set t = 0,
we have iz = (£)"/?, and the Cauchy problem (4.14) for @s is of the
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form (we divide by o2 the equation)
[P2(0% — £22) +pGP1(§ + B(¥/2"))| dn + Q@)

N ) = h2+2ﬂ~’y§ h ‘Iv‘t:/‘
way ) TNE@) (h/s', %)

W0, 2) = K" [Wo(h/2') — Fo(h/2')]

| hOabn(0,2) = B~ 148 [wy(h/2) ~ F1(h/2")]
The data w;(u), 7;(u), and the right hand side R(u,t' /') are flat at
u = 0. @ is the linear operator
(4.22) Q = hqy(hdy) + h*ga
and the perturbation N is deduced from N by the rule
-b

(423) N(@n) = S5 N (o)
The function g; is even and homogeneous of degree 0, so we can write
(4.24) §§ = al(t’/x’) =0 -’f- 06/2(15'/%')2 +o o> 0

B{t'Jz')y =be + by (t' /') + -
We shall study the Cauchy problem (4.21) for small values of ¢, of the
form
(4.25) t'=hs 0<s<s(h)
We choose s(h) such that (the constant up will be defined in (4.40))
(4.26)

M|logh| < s(h) < h7(VM > 0,Yv > 0) when h — 0
e#os(h) (R 7} remain flat with all their derivatives when h — 0
In this range of values of ¢/, we can expect that the behavior of (4.21)
is governed by the linear equation
(4.27) R* (02 — cpd2) + pGPHE [h + bo)
Taking the Fourier transform %811 = 1, we are thus lead to study the
Hill equation on the line, with ¢’ = hs
(4.28) 2+ pGPHs+bo)+ A A=’
We shall denote by Mi(A) the 2 x 2 matrix defined by
f@2m)) _ FO)N . p—1 =

(4.29) <f,(27r) = M(}) #(0)) "+ pGP (s +bo)f +Af =0
We have det M()\) = 1, and the eigenvalues of M(A) are real iff
ftr(M(A))] = 2.

Proposition 4.1. i) For any A, one has tr(M())) > —2



il) The instability set, I = {¢tr(M()\)) > 2}, is of the form I =
Uk_>_—11k with I_; =] - OO,/\_.l], Iy = [)\0,0] , Iy = [)\k, A;c] for
k>1, with

(4.30) Ap <A <0< A KA <A N
ii) There exist k > 1 such that Ay # A\
V) 1Moot (M(A)) = 2
Proof We refer to [MK-M] for results and references on the Hill
equation. First of all, iv) is a general property for the Hill equation.

i) The solution G of (4.7) satisfies G(6 + 7) = —G(6) so s =
GP~1(s + by) is m-periodic. We thus have M(\) = N(A)? with
N(A) € My,(R),det N(A) = 1 (N()) is defined by (4.29) at

time 7). I N = ((Z g), we get Tr(M) = a? + 2bc + &% =
(a+d)?-2> -2

ii) Let V() be a 27-periodic potential solution of V/+ F'(V) =0 ;
consider the Hill equation f”+ F"(V)f + Af. Let Eo = 1V'2+
FV), (EB)=V2 [ TE_-——F%W’ and let us assume that F
satisfies the hypothesis (H.1) and (H.2) of §2. By lemma (2.1),
we know that the kernel of d2 + F”(V) acting on 27 periodic
functions is one dimensional and span by %%‘, For a small and
real (dy+ic)?+ F"(V) acting on 27-periodic functions has thus
a unique real small eigenvalue —A(c), with a one dimensional
eigenspace span by f(a, 8), with analytic dependance on c. Let
us introduce the taylor expansions A(a) = pa+ pea®+- - and
flo,0) = &5 + agi(0) + a?ga(6) + - --

One easely gets the equation

(6 + F"(V)] g2 + (2i8p + p)g1 + (2 — 1)55 = 0
Let W be the solution of [82 + F"(V)]W = 83V, orthogonal to 3%
From the first equation in (4.31) we get 4y =0 and g; = Cte%‘g —2iW,
so the integrability condition for the 2% equation gives
v 8V oW
4.32 - — 4 ¢ = =
(From the fact that €™ is an eigenvalue of M(A(a)) we get
(4.33)
Ae)

Tr(M)(@) = 2cos(zra) = 2 - 4%+ = 2 45ty
2

0
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d —4n?
(4:34) LT MO heo = ——

In our case, F(V) = ‘—z”f_:—; , V' 4+ V? =0, so we have W = p%llV, and

therefore po > 0. This implies

(4.35) Tr(M(0)) = 2 %TT(M(O)) <0
We now use a deformation argument to achieve the verification of ii).

e

For 8 € [0,1], let Fp(u) = ,8-“2—2+ (1—-8)%r, and Vj, be the 27 periodic
solution of Vj' + F'(V3) = 0 with V3(0) > 0, V3(0) = 0. We have
Ww=G, Vi =cos(8)

Tr{My(A)) = Tr(M())),

Tr(Ms(0)) = 2,

Tr(M;(A)) = 2cos[(v/1 + A)27].

As before, we have V(8 + 1) = ~Vj(x), so F"(V;) is m-periodic and
all the roots of Tr(Mg())) = —2 are double.

Let A_1(8), 2(8), A5(B), ... be the roots of Tr(Mg())) = 2 and
10(8), 1 (B), ... the double roots of Tr(Ms(A)) = —2 we have

A-1(B) < po(B) < Ao(B) < Xo(8) < m(B) < Ai(B) < X (B) < pa(B) - -~

Since 0 belongs to the sequence {M(8),\,(8)}, and A_y(1) = —1,
Ao(1) = Xo(1) = 0, we get po(B) < 0 and 0 € {Xo(B), X5(B)} by
continuity; therefore ii) is a consequence of (4.35)

iii) By ii) the first instability interval {\g, 0] is open, and it remains
to show that there exist another open instabillity interval. For
an Hill equation

[T+ V(O)f
with a potential V 2x-periodic, we know that all the instabillity interval
are closed iff V = C*, and that there exist only one open instabillity

intervall iff V' is an elliptic function ; in that case V must satisfied a
Weierstrass equation

(4.36) V" =aV?+4+bV+c  a,b,cconstants
Here V = pGP~!,p > 7, with G” + GP = 0, so one verifies that (4.36)
doesn’t hold true.

We are now ready to study the linear principal part of the non linear
hyperbolic equation (4.21).



Take k € N, k € [0, s(h)] with s(h) as in (4.26), and let us introduce
the Cauchy problem
(37 { 82f - ha (——-—"%’f*s’-) 2. + PGP~} (s +bo) f = 0
F(0,2) = fo(z') ; 85£(0,2") = fule')
Let Z(k) be the solution map at time 27 for (4.37)

o )] - )

Let us denote by Z the same object when we replace a(ﬂ%) by
Qo in (437)
Then, by the definition (4.29) of M we have

N L[ foln/h)
(4.39) Zo (f?) = 57}72-/@ /"M(aon?) {ff(‘n/h)} dn

where f(€) = Je = f(z')da’
Using prop 4.1 iil), we define a constant uo > 0 by

(4.40) €*™0 = sup{ real eigenvalues of M(\)} > 1
A0

We can then select a smooth hermitian matrix 7 — Q(n), such that if
we denote by C; the C? plane equipped with the norm ||z]|2 = *2Q(n)z,
then the following holds true

(4.41) sup [[M{aon?); C2)| = e
nek
(4.42) Jim [M(con®) 5 C2Jl =1
agn® 0\ |
(4.43) Qn) = 0 1) for n large enough

We shall denote by H(= Hp,) the space H}(R) & L*(R) equipped with
the norm

@4 = o Pl = 5y [ Fam@Enfen/rian

Notice that (4.43) implies that ||f]|% is uniformly equivalent with re-
spect to A to the usual norm :
(4.45)

3o, Yh €]0,1] , collfIl3 < /leol2 + [hw fol® + | f1[*da’ < ;};Hil!;ﬂ

The interest of this special choice of Hilbert structure on the set of
Cauchy data is that we have now

(4.46) Yh €)0,1] || Zo; H|| = e?mHo
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Proposition 4.2. There exist 7y, ¢1 such that

1) Forr > 0 small enough and f € H with support in |2’ — 1] <,
then Z(k)f belongs to H, has support in |/ — 1| £ 7+ 2nyh, and the
following holds true

(4.47) 1Z(k) £l < (€70 + k™) £l
2) There exist a bounded operator on H, S(k), such that
(4.48) By 0 Z(k) = (Z(k) + h"/4S(k)) 0 Oy
with for every k € [0, s(h)], h €]0,1]
(449) IS(E)HI < a
Proof Let V(s) = pGP~'(s + by) ; we shall consider § = (h, hk) as
a small parameter in the function a = a(ZL”‘fﬁ‘—hﬁ) ; then (s,2') — «

is bounded with all its derivatives uniformly with respect to 8 and
satisfies

(4.50) Vo, 3C, 8%, (a —ao)l < Coh¥ V3
Let us define E(f, s) by

1.
B(f9) = [ 31011+ Salou P+ e
The classical energy inequality applied to the Cauchy problem
(4.51) 852f - hzaf)ng +V{s)f=yg i fls=0 = fo. Osfls=so = f1
gives

(452) 3C,, Vs € [0.27], V8
' EV3(f,5) < {EY2(£.0) + Co [y llg(s', M r2ds'}e*

This implies, together with the finite speed of propagation for the
strictly hyperbolic equation (4.51), that if the data f = (fo, fi) are
in M and are supported in |2’ — 1] < 7, 7 small, then (f(s),dsf(s)) is
supported in |2’ — 1] < 7+ yohs, belongs to H and we have

(4.53) 3Co I f(s)lln < Collf(O)lln VB, Vs € [0, 2]
Moreover, if f satisfies (4.51), O, f satisfies

(4.54) {02 — h2d +V(s) — h@‘-(ha W Opf = Opg
By (4.50), for u = (ug,u1) € H, we have

a 4 €
|7 oz /haz'uo”zﬂ(z < ChT 7 H|ully;



therefore, (4.48) and (4.49) follow from (4.52), (4.53) and Duhamel
formula. It remains now to verify (4.47). Let us define the 2 x 2 matrix
kernel M = M(h, 8,s,2',7), as the solution of

(4.55) [85 + (_ah2 32, i _01>J MM =0, Mo = Id

By finite speed of propagation, there exist a fixed neighborhood W of
{#’ = 1,5 € [0,27]} such that M is well defined for (z/,s) € W, b,
smalls and every n € R ; If the data f = (fo, f1) are supported in
|’ — 1] < 7, r small, the solution f(s) = (f,0sf) of (4.51) with right
hand side g = 0 will be given by the formula

(4.56) £(s) = # / €=V M f(n/R)dn

We estimate M separatly in the two cases [n| < A, |n| > A, where A
is a large constant. To do so, we first introduce asymptotics.
1) [n} < A. In that case, we take h — 0 as small parameter.

— 0 -1 7 Aql / n
Let £ = (01772 v Ov)’ and let th M;(B,s,2',n) be the solu
tion of
(4.57)

{ 8y + L)M! — 2ian ( 5 8) M, —a ( a%, 8) M, =0

Mg =Td; M}oo=0for j > 1.
Then we have
(458) Vo,j 3C=C(A0j) 85,MI<C V8, Vnln<A

By the Borel Lemma, there exist M ~ £,/ M} and we have by (4.50)
(4.59)
Vo, 3C = C(A, 0)|8% (MY sm2r — M(agn?))| < CRY® V8, ¥y, 9| < A

We can choose M of the form
Al B!
1_
M = (6SA1 c’?sBl>
2) Inl= A

In that case, we take 7 — 0o as great parameter. (the negative
values of 7 can be treated in the same way). We then use the classical
optical construction of solutions of the form e**¢y to the equation
92 — h2ad% + V(s) = 0. The phase function . are given by

z'n )
(4.60) ¢ === +%x(0,5,2')n
where 4 satisfies the eikonal equation
17
(4.61) 8—31/& = £va(1 + h8ys) ; Yajemo =0
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and the symbols o4 ~ '§o n~lox (B, s, 2') satisfy the transport equa-
=
tion
(4.62)
Ti(ox0) =05 Ti(oxjr) + Plox;) =0 j20
T =1 [2(881/&)63 + 852@/)i - 2ah((1 + h@xnpi)&,: + hag:'(/)i)]
P = 8% — h?ad% + V(s)
Then for any data o4js=0 = 02, (4.62) admits a unique solution in the
space of symbols in 7, (with 3 as parameter). Let a4, b the symbols
solution of (4.62) with data
(4.63)
(a+ + a_)|‘5=0 =1 y (in(agw+a+ + 831,11_61_) -+ asa+ + 83@._)[3:0 =0
(b+ -+ b_)'s=0 = 0 3 (17](831//'+b+ + asw_b_.) + asb‘.{. + 531)_)|3=0 - 1
[We have 85¥4)5=0 = £/, s0 (4.63) is solvable]

By the Borel lemma, there exist functions of n (and 8, s,2') such
that a2 =~ ay,b} = by(n — 00) and we define M? by

A2 B2
2
(464) M= (83A2 6SB2>

with A% = e™+q2 +efM-a2 | B? = e} + 1= 52,
We have now to estimate the error terms M — MY, M — M2, The
matrix M is of the form

A B
M= (asA 3SB>

where A, B are solutions of P,A = F,B = 0, with
(4.65) 8% — a(hdy +in)* +V(s) = B,
We choose the associated energy
1 a .
£x(£:9) = [ 310617+ G100 +im) 7+ |£P
Then, for the Cauchy problem

Pnf =g .f]s=0 = fo, asfls:O = f
we still have the energy estimate, uniform in 7

(4.66)  3Co EM*(f,s) < P EVA(S,0) + Co /0 llg(s’, Mieds'}

1.) For |n] < A, the function f = A — A! is such fis=0, 0 fis=0 » Ppf
are O(h®) with all their derivatives with respect to (s,z’), uniformly
in n,B.

Using commutators of P, with polynomials in (hdy -+ in) and n,
(4.66), and the Sobolev imbedding H} — L™, we get

467) Va |0°,A~ A= € O(h*®) uniformly in 8,7,|n| < A
8,



2.) For [n| > A, the function f = A — A% is such that fis=0, Os fls=0, Pr f
are O(n~>°) with all their derivatives with respect to %, s, 2/, uniformly
in 8. Let us prove by induction on k that we have

(4.68) (1,05, RO, ) (08 f) are O(n™>°) in L®(s, L*(z'))
This is true by the energy inequality (4.66) for & = 0. We have
[P,, O5H = Z 9;(8, 5,2')(hd, + in)?0], where the g; are smooth uni-

formly in G, so we get
(4.69)
P[0+ f] = hgi(hdw + in)[at f]
= inge(hu + im0 + 3 g;(hdw + in)?0%, f + 0[Py f]
J<k

By induction, the right hand side of (4.69) is O(n~>) in L®(s, L*(z')).
Applying the energy inequality to the operator P, ~ hgy(hdy +17), we
get (4.68) at step k + 1.

Taking derivatives with respect to s, we thus get

(4.70) Va, |88, A — AL~ € O V8

Let r > 0 small, x{z') € C3°(R) with support closed to ' = 1 and
equal to 1 near [2' — 1| <7, and @(n) € C§°(] — 1, 1[), equal to 1 in
[-0.9,0.9]. Let ¢, @2 be the h- pseudo differential opexatoxs

(4.71) Pra = x(x’)eﬁ(a@y) s w2 = x(2)(1 - ¢)( =50%)

Let Z(k) = Z and Z; the operators defined in (4.38), (4”39)“ Let us
denote by < | >,]| || the scalar product and norm in H.

Lemma 4.3. Let H, = {f € H, support (f) C {|2' — 1] < r} ;Let Ao
large.

1) VA 2 Ao, Fes, Vf € H,. V3 we have
(4.72) (Z21af1Z0ant) = (Zopraf | Zoean )] < eab®4||£112
(4.73) 1Zo1af 1P = 1 ZoornfIIP] < exh®4)| £117 |
2) VA = Ao, Vh €]0, hol, 3an , N lin)l 05>“h =0 s.t. \'/f_ e H,, Vk €

[0, s(h)] we have

(4.74) WZp2afII? = lle2nf Pl < Sanliezafl®
(4.75) N ZoeonfIF = Nleanf Il < SxnlloanfI?
)3 >0 VAR A, ViEH,

(4.76) || fI* — |1 Zof I* = collpanfll®
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Let us first verify that (4.47) (and therefore Prop.4.2) is a consequence
of lemma 4.3
For f € H, we have, with 1 = @1, ¢2 = P2

1ZfII> =lZouf + Zoaf|?
= |Zo f? + (Zo1f|1Z2f) + (ZeaflZor f) + | Zoo fI1?
< ”ZOfll2 + 30,\h3/4“f||2 + 201l 422, A.f“2
< 61""’“’||j_||2 (e — 20\ n) |02 fII? + 30Ah3/4||f”2

If one choose A such that ¢y — 25y, = 0 for any h small enough, we
conclude that (4.47) holds true.

Proof of Lemmma 4.3

1) By the energy inequality, both Z and Zy are (uniformly in 3)
bounded operators from H, to H, yorqn-

The fourier transform p:i (&/h) isequal to [ R(52)e(n/A) _f {n/h)dn
and therefore satisfies

— R
VN, 30w L&/l < Cm(m)‘v VE gl 2 A+1

In particular, (1 — ¢(&%))p1a(f) is O(h%) in H, so in (4.73), we can
replace 12 f by Y(L—a/\l),,l,\j By (4.58) and (4.67), Z o y(%) is a
h-pseudo differential operator ; therefore, using (4.59) we get

HZ = Zo)p(2x)er )l < cxh4. This implies (4.73) .

In order tomfa\rove (4.72), it is now sufficient to prove
hoy
(5o Zoraf)(Z = Zo)oaaf)] < ek P
Writing (Z—Z,) = (Z~Zo)e(4&) +(Z - Zo)(1-¢ 2(42)) we are reduce
to verify (for f € H,‘, support [(Z — Zo)ywaa(f)] is compact)
@ Iz - oGl S kISR

for ¥(z') € C§°.

To see this point, we write Z = Z2 + S where Z? is associated to
M? (see 4.64) ; the coefficients of M? are sums of Fourier Integral
Operators with phases (2’ — y')n + k2 (8, 27, 2')n (see 4.60) for which
the associated canonical transformations in the phase space {(z’,7) €
T*R} are closed to Id. More precisely, Z2 is a sum of operators of the
form Q4 (h, z, hd,)Jx, where Q1 are h-pseudo differential operators and
J+ is a change of variables given by Ji(f)(z) = f(z + h¢1(8, 27, 2)).
Therefore (4.77) holds true for Z,. By (4.70), the coefficients of .S are
operators of the form

(4.78) skz [ €/*(B,z,n) f(n/h)dn = Pf
| Vo [8gplro € O(n™%)  uniformly in §



with p compactly supported in z. Then
Pre/m) = —— [ 5.8 820 o F
PHEM = 57 [ 5:00, 5L i/

and (4.77) follows from the fact that p,(8, ¢, ) is rapidly decreasing in
(¢,n) uniformly in 8.

2) We have to verify that Z and Z; are almost isometries on H for
n large and h small. For solutions of (4.51), with energy E(f,s), and
right hand side g = 0 we get
(4.79)
£E(f,9)] < ClIVowali=E(f,s) + | (5, )12 EY2(£, )}
[E(f,s) = {3l < C [l = olzeellf ()13, + 11 £ (s, ) lI22]

Therefore, we have just to prove

(4.80)
&_5[10113 | H{Z(s)panf}illZe + H{Zo(s)p2nfhille < Sanllf 13 lim 6y =0

where Z(s), Zy(s) are the solution maps at time s and {}; denotes the
first component. As before, we may replace @, » f by (1 —go)(g'%i)gcg, Vi
in (4.80). Then (4.80) is obvious for Zo(s) (it is a constant coefficient
operator in z’), and for Z(s), it follows from (4.70) and from the fact
the coefficients of M? are sums of Fourier Integral Operators.

3) The inequality (4.76) follows easely from (4.41) (4.42) .

Let 0 < 50 < 53 < s(h), and let U(sy, so) be the solution map for the
Cauchy problem

(481) 02 — a(28)R202 + pGP~Y(s + bo)]f = 0

” f(s0,2") = fo 8sf(s0,2") = fr

fol _ [ flsn,2)

s e (] = (12
Let 79 > 0 such that
(4.83) IM(a0r5); Chol| = €™
Let £ € Z, (£) = (1 + £)"/2 and H} the Hilbert space with norm
(4.84) I£1E = (O£ + 110w ~ M%)_ﬂl%

Proposition 4.4. There exist hy > 0, Cy > 0, py > 0, such that, for
any h < ho, 0 < s < 81 < s(h), any data f € H;, = {f € Hj,
support (_.)_c) C l&' = 1] £ po}, one has U(Sl’SO)z € Hl},po-(-vo(sl—so)h and

(4.85) |U(s1,50)fle < Coete1=)|f|, VLeZ
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Proof : Using the group property U(ss, o) = U(ss, s1)U(s1, $o), and
the finite speed of propagation, we are reduced to verify that there
exist C s.t.

(4.86) [U(s1,80)fle S Chlfle VL, Vsi,s0 |s1—sol <2n

(4.87)
U (2kn + 27, 2km) fle < (™0 + CLA¥4)|f,| VL, VR € [0,s(h)]

If f satisfies (4.81), then (9, — i) f = g satisfies

(4.88) (62— ah202 +pGP=1(s-+bo) ~h 2% (A )]g = inollBwr) (hO) f

zl
We have |[ino2(0p0)(hOux) fll 122y < (€)C*|| i3, s0 (4.86) is a conse-
quence of the energy estimate in the space H. By definition we have
Z(k) = U(2kn + 2, 2kn). Using the proposition (4.2) we get

(4.89) (8~ w%)z(k) = (Z(k)+ R4S (k) (O — izf’hﬂ ) +ilnoh®/S (k)
Together with (4.47), (4.89) implies (4.87).

5. NON-LINEAR PERTURBATION

In this part, we shall study the Cauchy problem (4.21) for ¢ €
[0, hs(h)], where s(h) satisfies (4.26), and in particular

(5.1)  e*"(R 7;) are flats with all their derivatives when h — 0

We rewrite the equation as a 2 x 2 system, in the coordinates s = %, z’

oA 0 1
(52) 0. —A+L; A= (h"’aag, —V(s) 0)

with V(s) =26 (s+ ). L= (7. )

(53) T(f)=plGP (s + B(22)) ~ 7 (s +bo)f + QU + N (7).
Let £ = &, be the Hilbert space

E = {Q — Zp‘éeiw;g{eiénox’/h e H, (am,ge)eilnow’/h € H}
4 €2
i = SO (0> fuee = /|3, + || (Bwrg)e™ ™= /73,
We extend 8; — A + [, by the rule 8 = ny.2'/h, from C®(s,z') to
D, C>(s,z')e'® ; if P = P(s,2’,0;, ;) is a linear differential operator,

we extend P in P
ﬁ(z Ueeiw) — Z(e—iénox’/hP(Weienox’/h))eiw
¢ ¢



and we extend a power f — f* in the natural way, (3 fee?®)* =
7

Z( 2 fure fzk> e

I4 b ++Ep=¢L
Let us denote by Z, f, T the above extensions of ATLT.
Then, if f(s, 2, 0) satisfies

(55) @ -A+Df=0; f _ = F (.0

the 2-vector f(s,z’) =_]f~ = f(s, Z',no.2' /) satisfies

(56) @ ~A+Df =0 f _,=F @ m0s/h)

Proposition 5.1. There exist Cy, hy, py such that ~
i) foranyh <hg, 0<s5<8<s(h), 0<p< py, any data f €

Enp = {x € &, support (v C {|z’ — 1| < p}}, the solution U(s, so)f=

f(s) of (85 — A) fs) =0, f Sg) = i belongs to

En p+0(s1 — so)h and we have

(5.7) 1T (st 50)flle < Coeto®=*| fle

i) for any h < ho, 0 < s < s(h), p < po, and any _f:,_g € & p such
that ”_f:”é" <1, liglle £ 1, one has

(58) 1Elsmsa (D)l < Co [R5 + 112

(59 WElomolD) ~ B @l < Collf ~ lle [17/* + 1Flle + 1]

Proof : Let A, = e~mx'/k geitnoz'/h - o have A = @, As, and there-
fore

U(s1,80) = €D e 0= /MU (5, s0)e™m0='/* .
¢

Let g, = Le“’m'/h : we have etm='/A{[J (s, so)f}g = U(s1,80)g, and
(O ™o T B+ 110a (£ ) ™3y

is equal to (£)?|lg 1%, + 18w — i%)g, I3 Thus, (5.7) is a consequence
of (4.85).

Let f = <J;> ; we have I(f) = (ﬁ?fo))'
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By (4.15), (4.22), (4.23) and (5.3), the perturbation I' has the fol-
lowing structure
(5.10)

L(f) = BDo(s,t', @) f + hqy(t, &' )hOy f + R2qo(t, 2") f
+hDy(s + B(t'[a'), £, 2, 1) f + 3 Di(s + B(£/7), ¢, 2/, b) f*
k=2

The coefficients D;(6,t',2', h)(; = 0) are smooth in § € R/27Z, t' ~ 0,
' ~ 1, h €[0,1]. Therefore, we get

L) =T +Talf)
(5.11) Li(f) = (O~ hghdn)f

La(f) = D, har(hdw + ifno) fe

We first verify that (5 8). (5.9) holds true for I». Let [jw|[2 = [ wl*+
|hdpw|?da’. By the definition of the || . {| norm, we just have to prove
(5.12)

3Cy , VL. for g = (hOy + ibny)f , F = feltnox'/h

(Ol + 1 (Bug)e ™ M2, < Co [(02F I + 10 — B)FIE, ]

We have g = e=m%' /"9, F, 50 ||gl 12 = ||hdy Fll 2, ||(Ds g)e‘é”"“'/"”,;z =
(1(0xr — i€RYhDy F|| 2 ; this implies (5.12).

It remains to show that (5.8), (5.9) holds true for I';. For 0 < s <
s(h), we have hs < h%%. By the structure of I'; given by (5.10), we
are reduce to show that (5.8), (59) holds true for a power map

(5) = ()22

For f =Y £, let us define the ||| f]|| norm by
7

(5.13) AP = D (O (O fellze + 19z fell3)

£

By definition of the || || norm, we have

(514) —u()k<num<mu(ﬁm

so we have just to verify the algebraic inequality
(5.15) AP < Golll Al LA
We have, with f(z',8) = 3, f(z')e’®

I fellzeeny = (©~2de s dellee < 1IN
I fellmien = (O e leelle < NIA



JFrom the fact that H'(z’) is a subalgebra of L®(z'), we get

(5.16) <mn§:nﬂqusﬁe§jd%%%q

k4é=n k+é=n
(5.17)

2 - 2 ,
k<n/2 k>n/2

so (5.15) is a consequence of the injection £* x £2 «—s £2,

Proposition 5.2. There exist C, ko, po, €0 such that for any e €]0, &g,
h €]0, ho), p €0, po], the Cauchy problem

(5.18) @s—A+D)f =7, flsmo=fo
where the data 7#(s,x',0,h) , fo(2',8,h) are such that

f('57 ) € Lw(s;gh,p)
(5.19) sup [[7(s, e < ale, h)
0<s<s(h)
(5.20) fo € &np s Ifolle < ale, )
(6.21) afe, h)eros® = ¢

admits a unique solution f € C°(8; En,piyosn) which satisfies for any
s € [0, s(h)]

(5.22) I7(s)lle < Crale, h)ero*
(5.23) s
”f(s) - (7(3, O)fO "'/0 [7(57 U)f(m )dO'”g < Cl [5 + h‘l/z] a(gv h)eﬂos

Proof : Let |- | be the norm on C°([0, s(h)]; En pinesn) = A
F(s)lle

e Hos

5.24 Ale sup |
(5.24) |7 ossslio,)l‘ D)

Let ¢ be the map from A to A

(625 o(f)=0(s, 000+ / "F(s,0)((0 ) - EF(o: )))do

(From proposition (5.1) we get

(526) J1PDISCll+ L+ slfl+2If
“ 6(f) = 6(f)] < Colf = Flls(WR* + (11 + 1FD)]

301



302

We have s(h)h%¥* < h*/2, and we get the result by the fixed point
theorem.

To solve the Cauchy problem (4.21) with special data (g, @;), we
apply proposition (5.2) with the data

. | e
—_ i0 0
(5.27) £y =alehlge” - [h‘“’“*ﬁfl}

F o= R2Y28-YR
In (5.27), the functions f'o,fl,ﬁ are those given in (4.21) and are

independant of 8, and g = (‘ZO) is'such that
- 1

(5,‘28) ngi""m//hH%-% ”az,_g-einom'/h”% <1.

;From (5.1) and (5.23), we get that the solution f satisfies for any
s € [0, s(h)]

(5.29) ||f(s) —a(e, h)U(s,0)e?glle < Cile+h)a(e, h)e™* +O(h*)

Lemma 5.3. Let e = :0 € C?\0 such that M(agnd)e = e*™oe. let
1

w(z') € CP(jz'~1] < po), po small, equal to 1 near |z'—1] < 3po/4, and
P(z') € CF (' — 1| < po/2). Let O(s) be the solution of the differential
equation on the line

(5.30) (82 + pGP~Y(s + bo) + conZ)O(s) = 0 ; O(0) =e,0'(0) =€y .

Then the following inequality holds true
{5.31)
é = ‘/}(xl)e—imml/h [U(S, 0)&0(3;’)61"701"/’12] - einox’/h e(s))]

sup )(Hé(& e+ 1028(s, -)lIr)e o € O(hY?)

0<s<s(h

Proof : Let s = 2kn + 0, o € [0,27] By the definition of Z(k) given
in §4, we get that e~ ™'"/h[/ (s, 0)(z")ei™* /he is equal to

(5.32) e ™Y (s 2km)Z (k1) 0.0 Z(1) 0 Z(0)p(z')e™= /e .



Let £ € {0,1, --,k}. By the definition (4.55) of M, we have in a
fixed neighborhood of 2’ = 1

(5.33)  Z(€)e™/he = /A M(h, B, 27,7, m0)e (8= (h,hi)) .
Using (4.50), (4.57), (4.59), (4.67), we get

inor’ [h, — Linox' /N[ o270, 4 S
(5.34) {Z(E)e e=e [e*mHoe + 4]

sup{|ledillr + 190w dilla} < C*RS .

Using now proposition (4.2) we get

(5 35) Z(lx — 1) [<XRENe Z(l) o Z(O)eil}oz//hg = ei"O"'/he27fkuo{£ + é]
edlln + Hledwd|n} < Crep3/

We also have (©(2k). ©'(21k)) = e*™#oe, so we get (5.31) for the
values s € 27N. We obtain the general case. applying U{(2kn + o, 2kn)
to (5.35), using U(2km + o. 2km)el™x /g = ¢tz Ih M(E, B, 0, 7', m0)e
(8= (h,hk)) and (4.50), (4.57) ’

Lemma 5.4. Let wp(t', 27) be the solution of the Cauchy problem (4.21)
with data (¢ € [0,1])

Wo(h/2") = ala(z, h) cos(noz’/h)eo
(536) {i'l(h/:zt’) = al"""3a(e. h)cos(noz’/h)er .

Then the following inequality holds true, uniformly for t' €-{0, hs(h)]

(5.37) [ (' 2') ~ acos(noa’/R)O(H'/h)e(e, h)| fox (1112 20)
< C*[e + h?)ale. h)et' /" + O(R™) .

Proof : Let f(s,2',6) = %}L(s, ). By (5.4), we get with

Nin
=\ fie
< €32 || fodllZs, + 10w foel 2, = B
(5.38) Y < 0>28 < CIf(s, )lIE -
14
We have
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(5.39) 1o ell oo (iar-11<00) < C*(€)Y/?0,

S0 we get

(5.40) 1D foels, @)™ ™ |posarion) < C*lIf(s,)lle
4

Therefore, (5.37) is a consequence of {5.29) and Lemma (5.3)

We now come back to the Cauchy problem (4.13).

Let us denote by vf(t.z).a = 0,1 the solutions of

\p

h2(92 - 92)eg + S = ¢

gp=1

(541)  {u8(0.2) = Fgo(fi2) + awo(hic)]

(h8)vE (0, ) = A F1H9(gy (h) + aw; (Ax)]
where {wy, w1} are the data obtained by the transformation @y (t'. z’) =
e~bwy(t, x) from {dy. @1} given by 5.36. We have a(e, h) = za(h) with

(5.42) a(h)erosth =1
and (4.26) implies (s(h) > M|log h] VM)

(5.43) a(h) € O(R>) .

Thus, the differences of the Cauchy data of the v} are flat when
h — 0 in a fixed neighborhood of 2’ = 1

(5.44) (v? = v} )emo and ROy (v) — v} )i=o are O(R>) in C .

We have t' = (t.z) and 2’ = 27%(1 + O(t/x)?).
(From s(h) <« (Vv > 0). we deduce

(5.45) | cos(noz’ /h) — cos( )! < C*h}? for t' € {0, hs(h))
By (5.37), we get for ¢(t.z) € [0, hs(h)]. |z’ = 1] < &

(5.46) 1(0f = vh)(t, ) — cos(;2%)8(i(t,z)/R)ea(h)]
< O (za(R)(z + hY?2)erovta)h L O(h)) .



We are now ready to achieve the verification of Theorem 4.
We denote by T = fit,p = Kz the time and space variables in Theorem
4, and we define the two functions ¢ and ¢’ as follows.
By homogeneity, there exist g(T, p) solution of (1.4), such that

(5.47) v(t,x) = K g(At, hz)
In order to define ¢'(7, p), we introduce

9Pt (Bt h) = B fP(t, x)
(5.48)

gk, Bit, hz) = Kvk(t, z)
Let go1(h, p) (resp. gg7(p)) the Cauchy data of § (resp. ¢**) and
P = 27" Let ¢(u) € CF(]—1/4,1/4]) equal to 1 in the set ju| < 1/8.
Let us define ¢’(T, p) as the solution of (1 4) with Cauchy data

(549)  go1(p) = g7 (p) + Zw "ﬁ?‘ )[Go,1(Fms ) — 555 (p)]

n=]
By finite speed of propagation, one has ¢'(T’, p) = §(h,, T, p) in the set
lp = hin| < B — |T|. We have 8%(go; — g5,) € O(p™), and the Cauchy
data of g,4', and g% have the same asymptotic expansion on p = 0.

In order to verify (1.12) we take 6 =6, = i, = 2", Usmg (4.5),we
get for T = ht = §"*Pu(f) and p=ha € I; = [ — p(oy 5+ Jg;]
p(t z)
{5.50) e
with ¢; = ¢¥/(0) and z € [~¢y, ¢a] , with ¢y small if ¢y and § are small.
Using (5.46), it remains to show that we can choose the function u
such that for any z € [—cs, ¢}, one has for any § = 27", n large

= p{6) + 2

(5.51) e (e () + 2) > &
and
(56.52) ap(d) + 2 < 5(6°)
The function e #¥Q(y) is 2m-periodic ; it is thus sufficient to take

c1pu(6) = s(8%) ~ I(6) where for each n large, we choose [(27") € [£, ¥]

in order to maximize the left hand side of (5.51).
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