NON LINEAR OPTIC AND SUPERCRITICAL WAVE EQUATION

GILLES LEBEAU

Dedicated to the memory of Pascal Laubin

1. Introduction and results

In this paper, we are interested in the study of the Cauchy problem for the non-linear wave equation in \mathbb{R}^3

$$(1.1) \qquad \left\{ \begin{array}{ll} (\partial_t^2 - \Delta_x)u + u^p = 0 & u = u(t, x) & t \in \mathbb{R}, \quad x \in \mathbb{R}^3 \\ u_{|t=0} = u_0(x) \in H^1 \cap L^{p+1} \; ; \; \partial_t u_{|t=0} = u_1(x) \in L^2 \end{array} \right.$$

Here, p is an odd integer, and the function u is assumed to take real values.

The formally conserved energy for (1.1) is

(1.2)
$$E(u) = \int_{\mathbb{R}^3} \left(\frac{1}{2} |\partial_t u|^2 + \frac{1}{2} |\nabla_x u|^2 + \frac{u^{p+1}}{p+1} \right) dx$$

The Sobolev imbedding in \mathbb{R}^3 , $H^1 \hookrightarrow L^6$, leads to the natural classification in terms of the different values of p

p=1 linear

p=3 subcritical

p = 5 critical

 $p \geq 7$ super critical

Existence and uniqueness of strong solutions for (1.1) is well known in the subcritical case $p \leq 3$. In the critical case p = 5, the Cauchy problem for (1.1) has been solved by Grillakis [G] and Shatah-Struwe [S.S]. We recall here the known global result on strong solutions (see Shatah-Struwe [S.S] and Bahouri-Shatah [B.S]

Theorem 1. (p = 5) For any $(u_0, u_1) \in \dot{H}^1(\mathbb{R}^3) \times L^2(\mathbb{R}^3)$ there exist in the space

$$B = \left\{ \partial_t u \in L^{\infty}(\mathbb{R}, L^2), \nabla_x u \in L^{\infty}(\mathbb{R}, L^2), u \in L^5(\mathbb{R}, L^{10}) \right\}$$

a unique solution to the Cauchy problem

$$\Box u + u^5 = 0$$
, $u_{|t=0} = u_0$, $\partial_t u_{|t=0} = u_1$