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We deal with infinite dimensional optimization in Banach spaces, finding
an existence result for maximum (or minimum) points for a certain type of
functions. ’

A remarkable result in this direction is the Stegall variational principle
[10]: if C is a nonempty, closed, bounded and convex subset of a Banach
space, C has the Radon-Nikodym property and f is an upper bounded up-
per semicontinuous real-valued function on C, then there exists an arbitrarily
small linear continuous perturbation ¢ such that f+¢ attains its strong max-
imum on C. Our aim in this note is to obtain a Stegall’s type result showing
that we have an arbitrarily small continuous n-homogeneous polynomial pet-
turbation (n-odd natural number) with the same property.
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Belgique. The second author thanks for the hospitality of the University of Mons-Hainaut
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There are many other variational principles, for example, Ekeland’s vari-
ational principle [6], which has the same hypotheses on the function to be
maximized but without assuming the Radon-Nikodym property, and gives a
small perturbation which is only Lipschitz. A general question in the opti-
mization theory is to find good perturbations (assuring existence of a point
of minimum of the perturbed function) in some class of perturbations. In
many cases the set ot good perturbations is dense (even Gj) in the set of
all perturbations. For further information about variational principles and
perturbed optimization see for example : [3-10}.

Our result in this note is related, as well, to the paper of R.Aron, C.Finet
and E.Werner [2], where an extension of the Bishop-Phelps theorem is proved
for n-linear continuous forms in some spaces. Their arguments shows also the
denseness of norm-attaining n-homogeneous polynomials in a Banach space
with the Radon-Nikodym property. M.D.Acosta, F.J.Aguirre and R.Paya
[1] constructed examples, showing that the results in [2] are not valid in
arbitrary Banach spaces.

Let (X, ||.]|) be a Banach space. We shall recall the following definitions.

Definition 1 (a) Suppose that C C X is a nonempty set and that f is an
upper bounded real-valued function on C. For each a > 0 define the slice of
C by

S(f,a)={x e C: flz) >sup f(C) — a}

(b) A nonempty subset A of X is said to be dentable provided it admits
slices of arbitrarily small diameter, that is, for every € > 0 there exists z* €
E* and a > 0 such that diamS(z*, A,a) < €.

Definition 2 A subset A of X is said to have the Radon-Nikodym property
if every nonempty bounded subset of A is dentable.

We say that f attains its strong maximum at z over C, if f(z) = sup f(C)
and ||z — z,|| — 0 whenever f(z,) — f(z).
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Let us denote by F,,(X) the space of all continuous and symmetric n-linear
forms on X x ... x X into R endowed with the norm

1] = sup{|A(21, . 2a)| : i S 1, =1,..,n}.

If A € F,(z), then consider the function 4 : X — R defined by
palz) = Az, ..., z); p4 is called n-homogeneous polynomial on X. We denote
by P,(X) the Banach space of all continuous n-homogeneous polynomials on
X, endowed with the norm:

lloall = sup{joa(e)l, lizll < 1}

Theorem 3 Suppose that C C X is a nonempty, bounded, closed and convex
set with the Radon-Nikodym property. Let f be an upper bounded upper
semicontinuous real-valued function on C. Then for every odd integer n
there exists a dense G5 subset @, of Pp(X) such that for every ¢ € Qn, f+¢
attains its strong maximum on C.

Our proof follows the ideas of the proof of Stegall’s variational principle
[10], given in the book of Phelps [8]. We need the following lemmas.

Lemma 4 ([8]). Suppose that {A,}2, is a sequence of nonempty subsets of
X with the following property: there exist constants € > 0 and A > 0 such
that for all x € coA, andy € X

dist[z, co(An+1 \ B(y;€))] < A/2"

Then the set
A= n;;“;lu,jZnCOAj

s nonempty and not dentable.
The proof of the following lemma is straightforward and is omitted.

Lemma 5 ([8]). Suppose that the real-valued function f is bounded above
on the nonempty subset C of X. Then for every o > 0, there exists 3 > 0
such that S(f + ¢, 8) C S(f,a), whenever ¢ € P,(X) and |j¢]| < 8.
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Lemma 6 . Let C be a nonempty, bounded, closed and convex subset of X
with the Radon-Nikodym property, f be an upper semicontinuous, real-valued,
bounded above function on C and n be an odd integer number. Then for any
€ > 0 there exist ¢ € Po(X),|l¢ll < €, and a > 0 such that diam S(f +
p,a) < 2.

Proof. Proceeding by contradiction, suppose that there exists € > 0'such
that for every ¢ € P,(X), |l¢|l < € and each a > 0, we have

diam S(f + ¢, a) > 2¢

For each m let

An = U{S(f +9, 7)1 0 € Ba(X), gl S € = 5},

The set A, is nonempty. Take A = 5/2. We will show that the sequence
{Am}3., satisfies the hypothesis of Lemma 4, which will give us a contra-
diction, since C' has the Radon-Nikodym property. We want to show that,
for any natural m and y € X,

codm C co(Amer \ B(y;£)) + 2%B(o; 1. (1)

Let m Dbe fixed natural number. Since the set of the right side is convex, it
suffices to prove that it contains A,,. Suppose that z € A,, but for some
y € X, it is not in the right hand side of (1).

By the separation theorem, there exists y* € X*, ||y*|| = 1 such that

(v',2) > supl(y",) @ € An\ By o)} + 5
Then
(02" > (00 + 5)" Ve € Amir\ Blyie) 2
Now suppose that z € S(f + ¢, zaw) With ¢ € Po(X) and |l < & ~ 5.

Consider
P(z) = p(z) + r{y*, 2)"
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with r = 5. As ¢ € P,(X), let H in F,(X) be the corresponding sym-
metric form. Then

where
L(zq,yan) = H(zy, oy xn) + 75 1) (Y™, ).

Therefore L € F,(X), P € P,(X) and

1Pl < llell +7r<e-

gm+1 :

Then S(f+ P, 4(m“)n) is contained in A,,,+;. But as P € P,(X) and ||P|| < &,
we have

diam S(f + P, m——) > 2¢.

2(1n+1 n

Then there exists z in S(f + P, ;mmw) \ By €) and

(f+P)(z) 2 sup(f+P)C)~ goimm
2 (f + P)(&) = gorrrm |
=(f+o)(z)+r{y",2)" — soamw  (by definition of P)
> sup(f +9)(C) = g +7(¥",2)" — qomvrm
(as 2 €S(f+¢ 7))
> (F+9)2) = pm(l+ ) +7({2) + )" (by (2))
=(f+P)(2) —ry"2)" — pw(L+ &) +7((y", 2) + 35
It follows that

) 3)

2m(1—'n)+1(1 + -——) > 2’""(((2! Z) om

Case 1. n=1.

Then by (3) we obtain 3 > X, a contradiction.
Case 2. n > 3 and (y*, z);éO

Consider the real function

§(t) = (at + A)" — (at)",
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where a = (y*,z) (vecall that n is an odd natural number). It is easy to
see that lim; 1. = +00, € attains its global minimum over R at the point
to = —4 and £(to) = 2(3)". Then the left side of (3) is less than 2(3)", a
contradiction with (3).

Case 3. n > 3 and (y*,2) = 0.

By (3) we obtain a contradiction. The lemma is proved.

Proof of Theorem 3. Fix n and for every natural m define
1 _
w={p € P(X): diam S(f + @, o) < ~ for some a,, > 0}.

By Lemma 6, for each m, Q) is dense in P,(X) aud it is open by Lemma 5.
By the Baire cathegory theorem, the set

Qn = Q;:l

is a dense G subset of P,(X).

Since f is upper semicontinuous, the set S(f + ¢, ) is a closed set.
Let z¢ be the unique common point of the sets S(f + ¢, am),m > 1 and let
0 € Qn, {2} C C, (f +p)(xn) — sup,ec(f + @)(x). Then for every m > 1
there exists v such that x, € S(f + ¢,qy,) for every n > v. This means
|Zn — xo]| < 7—;—, i.e. , — zg and the theorem is proved.

It is easy to see that Theorein 3 is not valid for even n: take, for example,
X=R,C=[0,1,n=2and f(z) =22
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