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ABSTRACT

A new relativistic oscillator is studied through the general connection bet-
ween the Dirac formulation and supersymmetric quantum mechanics, Unitary equiva-
Jences related to Foldy-Wouthuysen transformations are particularly pointed out.
The new F.W, representation is visited.

RESUME

Nous &tudions un nouvel oscillateur relativiste 4 travers la relation générale

entre la formulation de Dirac et la mécanique quantique supersymétrique, Des Bqui-
valences unitaires relifes aux transformations de Foldy-Wouthuysen sont particuli-
arement exploitées. La nouvelle représentation de F.W. est analysée.
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1. INTRODUCTION

Relativistic particle descriptions such as the Dirsc wave equation have been

dEI]Ez] with (non relativistie) supersymmetric considerationsIBJ,

already connecte
mainly when particles are in interaction with constant magnetic Eieldsgl}. This
correspondence has been very recently refined and extended[zl to the cases of
arbitrary interactions through the use of (generalized) Foldy-Wouthuysen (F.H.)
transformati0n5[4]. More specifically, the odd part of an arbitrary Birac hamilto-
nian has been identified with anyone of the supercharges leading to the correspond-
ing supersymmetric system. It has also been shown[z} that convenient F,¥. transform=-
ations expressed in terms of the above mentioned supercharges lead to a diagonalized
relativistic hamiltonian essentially seen as the square root of the corresponding
supersymeetric hamiltonian,

Many other recent papers[sl have been mainly devoted to the application of
these considerations to the harmonic oscillator, so that a relativistic oscillator
can now be defined by the Dirac hamiltonian associated with the supersymmetrized
version of such a system through a convenient F.W, transformationE . It has to be
mentioned that spin-orbit coupling terms[Y}[sl play a prominent role in this super-
symmetric point of view., Moreover, all these studies put the accent on only one
relativistic oscillator (associated with only one of the two possible supercharges).
We propose here to concentrate on the other already mentioned relativistic
oacillatorfz} and to study its consequences on the corresponding F.W. transforma-
tion as well as on its Lie invariance superalgebra, for example,

The contents of this paper are then distributed as follows. In Section 2, we
recall the connections between supersymmetric and relativistic formulations and we
illustrate such developments on harmonic oscillators. Section 3 is then devoted to
the study of the system that we will call the second relativistic oscillator. In
particular, we show the unitary equivalence between this system and the already

[s}

studied one’”", We conclude by some additional comments in Section 4.

2, SUPERSYMMETRY AND DIRAC HAMILTONIANS

Supersymmetric quantum mechanical systems are described by ¥ odd (l.e.
block-antidiagonalized) supercharges Qi {j = 1,2,...,8) and one even {i.e. block-

diagonalized) hamiltonian Hoo. These operators have to satisfy the following
[3]

relations
{Qj’ql} = 2551 Heo s 2.1)
[H!Qj]=0 » j,1 = il"'JN} (2.2}

characterizing the superalgebra sqm (N}, Restricting our considerations te the

N=2-context, it is well known that a convenient realization‘of the two possible
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(8}

supercharges is given in terms of the superpotential Wi by

Q, = E G3t + WD (2.3)

and
)

%=~ G - dh 2.4)

where the fermionic quantities satisfy in gemeral

{w.,wk) = 28, ik (w..mk} 22, ik :jk = - Ekj ; j.k=1,2,3 5 a2 =1,2,
(2,3)

We are thus led to the following supersymmetric hamiltonian (see Eq. {2.1%)

1 >

Heg =3 G2+ @Y - § (o nlepep) - 5 Lap, = (30py)ey,
(2.8)

where spin-orbit coupling terms explicitely appear if the antisymmetric temsors

Eik's are non vanishing. When three spatial dimensions are concerned, a convenient
8]

realization of (2,5) is given by

[

® noj®01 ,tp.=oj®02. (2.7

(S

We recognize here, in the standard representation, the Dirac matrices uj and
ia, ﬂ, respectively.
Applying these considerations to the specific case of the harmonic oscillator

characterized by

W - 3wk, (2.8)
we obtain the following supersymmetric hamiltoniante]
HO _ 1 22 2 222 -+
Heg = 5 (b %) + o= mm(suo + 2L ® oy (2.9)

1t has been shown{zl that the corresponding Dirac hamiltonian writes

B0 = /7 g mg = e+ imadk) + mB (2.10)

and it is also well known that the associated diagonalized operator is

1
He -y o U‘; - s(zugg + nd)l

Foa.,1 - Uit (.15

3
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with

E+m+ /2 8Q, i ol
¥, = =exp (iS,) , § = -3 8Q,H '8 ,
U ke + ;172 1 1 7 P

E:EP=(32+m2)”2, tan 6 = /F 1, [o,8) =0 . (2.12)

The notation H stands here for an even operator defined as the positive square

root of the supersymmetric hamiltonian,

3. THE SECOND RELATIVISTIC OSCILLATOR

Let us now propese to study the second possible Dirac hamiltoniantz} describ-

ing oscillatorlike systems

HO

o™

V2 2Q, + m8 = a'(lBP - mex) + @B (3.1)

acecording to Eqs. {(2.3), (2.7) and (2.8). Let us first emphasize the covariant

formulation of the relativistic equation

g 3, v
i3t HD g ¥ - (3.2)
It is readily obtained as
(?i“pu - Vx v = 0 (3.3)
where we have defined
Yoo, Peotd , LM, op =000, 6o
These matrices are such that
. {Yu Nu} - zgﬁv , g00 =1, gJJ = -1, (3,5)
They thus obey characteristic anticommutation relations identical with those
satisfied by the usual y''s
Let us then consider the following (new) F.W. transformation
U, = exp (iS,) , 5, = 43-70 = - fa+ (P + imuBX)8 , (3.6)

in order to get the diagonalized form of the hamiltonian (3.1).
Applying this unitary operator on Hgoz , we thus obtain
H]
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2
HO HO + _ HO .t
UL Uy = HD,Z(UZ) (3.7}

Heu.,2 ™ Yalp,2

with
HO
(HD,2'S2} = 0, {(3.8)

Straightforward calculations finally lead to

Ho > > 1gewg, 2
. - * T
HF.W.,Z (iBu+n + mB) (e }
fa T m . s
a igaetm {cos 2HO - i sin 2H0) + B(m cos 2HR + H sin 2H9) (3.9
if
W e @nt . (3.10)
Asking for the even character of Hgow 40 We are led to
— M.,
" .
tan 2HB = e (3.11)

The angle 6 is thus the ome already appearing in (2.12). The requirement (3.1D)

finally implies that

HO

FM.,2 = g{m cos 2He + H sin 2HE)

/ HO 2 HO
= B ZHSS +m B HF.W.,! . . (3.12)

Both relativistic oscillators are thus associated with thg same {nonrelativistic)

H

supersymmetric hamiltonian. This suggests us te search for a (third) unitary
operator comneeting the two above mentioned relativistic hamiltonians. We can

actually show that

HO HO % .
D,? U3HD’1U3 (3.13)

with
Uy = o0l + 16) (3,14

the condition ]CI2 = %— ensuring the unitarity of such an operator.

This evidently implies the {physical) equivalence of these two relativistic
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oscillators. In particular, the Lie invariance supesralgebra associated with Hgoz
’

is isomorphic to the onerz] corresponding to Hgol , t.e. 50 (3) HBgi @ g1 (1),
£ being an abelian guperalgebra whose order is’two.

Let us end this section by characterizing some main operators of the F.Y., ve-
presentation associated with this relativistic oscillator, Through the unitary

transformation (3,6) which can also be written on the guotient form

E+m+/fBQ2

Ug 2« —— (3.15)
Y2E(E + m)
we can determine all the new F.W. operators O obtained from the Dirac ones
OD by
-1
OF.W. = UZODUZ . {3,186)

Let us only quote the position and momentum operators

-+ 3 =1
*poa. T Ul
e - we )y 3 EPE e sme@RE
2E{E + m) 2E 2E(E + m) '

and

> -1
Peyr, = Uybply

2 222
x-m(zfu§+3)+ > > . -+
, {, B % P - ey [8E DT+ @D s
where L =T Ap and f-gﬂlz.

In order to get the right interpretation after Foldy and WOuthuysenf l'l, we also

introduce the mean position operator

e =Ry m 6.1
leading to
] -+ -+
iF.N'. =8 u“wff_u : (3.20)

We immediately observe that, as in the free case {w = 0), we recover here the
continuous character of the spectrum of the mean velocity operator as well as its
corresponc.ienee with its nonrelativistic analog while, in the Dirac representation,
we have ;D = iga admitting only the unacceptable discrete eigenvalues & 1.

In an analogous way, we can introduce the mean momentum operator

434



B «p. = p (3.21)

which gives, with respect to the hamiltonian (3.1)

3 w2 > >
Poy =" 8% (ZAp+ mex) , (3.22)
with an interesting interpretation in connection with the nonrelativistic limit,
Both formulas (3.20) and {(2.22) also are meaningful when the free case is

considered from this interacting context characterizing the second harmonic oseilla-

tor.

4. COMMENTS AND CONCLUSIONS

We have exploited the connections between relativistic and (nonrelativistic)
supersymmetric formulations by studying a new relativistic oscillator associated
with another possible supercharge. It has been shown that this new system corres-
ponds to the nonrelativistic limic already present in a previcusly considered
context, e.g. a supersymmetric oscillator with spin-orbit coupling terms. This
result is relevant to the fact that the two relativistic oscillators are {unitarily)
equivalent systems as shown through our transformation (3.14). Such an equivalence
can then be exploited at different levels making in particular clear that all the
information concerning the degeneracies of the associated spectrumES}, as well as
the (super)algebras subtended by these degeneracies[S}, are still (and directly)
available here.

Open further problems in conmnection with this equivalence on relativistic
hamiltonians describing other interactions can be expected to be treated similarly.

We plan to come back on this questien.
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