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On the symmetry of the age field of a passive tracer
released into a one-dimensional fluid flow
- by a point-source

Eric Deleersnijder , Eric JM. Delhez , Michel Crucifix
and Jean-Marie Beckers

Abstract. Tracer is released from a point-source into an incompressible, one-dimensjonal
fluid flow, with constant véiocity and dif’f‘usivity The age of a tracer parcel, which is
defined as the time elapsed since leavin'g:‘ the source, may be evaluated as the ratio of the
age concentration to the tracer concentration. The latter are governed by two partial
differential equations. Time-dependent analytical solutions are derived, which show that
the age is symmetric with respect to the source. This is astonishing, 'since it could have
been expected that the age would reflect somehow the strong asymmetry of the tracer
concentratidn, which tends to be much larger on the downstream side of the source than
on the upstream side. Some finite-difference counterparts of this problem are seen to lead
to age fields which, in their steady-state limit, are also symmetric with respect to the
source. This is believed to be helpful to interpret the results of numerical modeéls of
complex fluid flows in which the age is introduced as a diagnostic variable.

1. Introduction

To understand or interpret a fluid flow the processes taking place in it must be identified
and investigated. To do so, appropriate gauges or sufficiently realistic numerical models
must provide values of the state variables of the flow under consideration -— i.e. velocity
components, pressure, density, tracer concentration, etc. — with enough accuracy and
space-time resolution so that they can be subsequently pictured by means of appropriate
computer graphics software. However, most flvid flows, whether they occur in natural or
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artificial domains, are so complex that examining a number of graphical representations of
state variables is not sufficient for gaining a profound insight into their functioning. This is
why computer graphics must often be used in conjunction with other interpretation
techniques, some of which demand that auxiliary variables be measured or computed. The
age is one such auxiliary variable.

age(t!)

trajectory of the
tracer particle

age(t?) = age(t)) + (12 ~11)
r(th)

r(z?)

Figure 1. Illustration of the definition of the age. A tracer particle is considered. Its
trajectory r(?) is displayed, where ¢ and r denote time and the position vector of the
particle under study, respectively. The difference between the age of the particle at two
successive instant, ¢} and 2, is defined as the elapsed time, i.e. 12—,

According to Delhez er al. (1999) the age of a parcel of a tracer, i.e. a substance
dissolved in a fluid mixture, is defined to be “the time elapsed since the parcel under
consideration left the region in which its age is defined to be zero” (Figure 1). The nature
of this region, which may be zero- to three-dimensional — i.e. a point, a curve, a surface
or a volume — depends obviously on the flow considered and the purposes for which the
age is introduced. The general theory outlined in Delhez et al. (1999) and set out in
Deleersnijder ez al. (2000) may be resorted to for estimating at any point and time in the
domain of interest the age of an individual tracer, as well as that of suitably-defined
groups of constituents of the fluid mixture being studied. This theory is intended for
numerical models, though some of its aspects are believed to be of use in experimental
studies. .

The age was used frequently in the realm of oceanography, essentially for estimating
the ventilation rate of ocean basins (e.g. Stuiver et al. 1983, Broecker ef al. 1991, England
1995, Campin et al. 1999) or inferring the horizontal circulation of shelf seas (e.g. Prandle



1984, Salomon et al. 1995, Delhez and Deleersnijder 2000). In these applications various
approaches to the concept of age were introduced; all of them may be regarded as
deriving, in some cases with severe approximations, from the general theory referred to
above. The latter could be resorted to for helping to understand fluid flows others than
those occurring in the oceans. To the best of the authors' knowledge, this was hardly ever
achieved. It is also regrettable that no effort was ever devoted to the investigation of the
behaviour of the age in simple, idealised fluid flow problems. It is doubtless that the
results of such studies would have been essential for improving some of the interpretations
of measurements or numerical simulations that appealed to the concept of age.

A noticeable exception is the analytical study of Beckers (1999), who sought
inspiration in the numerical simulations reported in Prandle (1984), Salomon et al. (1995),
and Delhez and Deleersnijder (2000). To gain insight into the long-term circulation over
the north-western European shelf seas, these authors took advantage of slowly-decaying
— i.e. almost passive — tracers released into these waters by the nuclear fuel reprocessing
plants of Sellafield, U.K., and Cap de la Hague, France. The concentration of the relevant
tracers in the sea was modelled, compared with in situ data, and subsequently used in a
diagnostic mode for the purpose of estimating their age as the time elapsed since leaving
the vicinity of the outfall pipes of the reprocessing plants. Beckers (1999) tackled a
problem ensuing from a drastic idealisation of the three tracer-based studies just
mentioned, i.e. the determination of the steady-state concentration and age of a passive
tracer released by a constant point-source into a fluid flow with constant velocity and
diffusivity. It was shown that the age field is symmetric with respect to the source, a very
surprising result since it could have been expected that the age would reflect somehow the
strong- asymmetry of the tracer concentration, which tends to be much latger on the
downstream side of the source than on the upstream side.

The present article may be viewed as a follow-up to the preliminary results of Beckers
(1999). A passive tracer is released into a one-dimensional fluid flow by a point-source.
The velocity and the diffusivity are constant, whereas the rate of release of the source may
vary in time. Analytical, time-dependent expressions of the concentration of the tracer, its
age concentration and its age are sought to determine whether or not the age is symmetric
with respect to the source. Nonetheless, before actually tackling this particular problem, it
is necessary that the key aspects of the general theory of the age be recalled.

2. Summary of the general theory of the age

A fluid mixture is made up of I constituents that can be identified by the index i (1<i<7).
Let x, y and z denote Cartesian co-ordinates such that the position vector of any point in
the domain of interest reads x=(x,y,z). According to Delhez er al. (1999) the concentration
distribution function of the i-th constituent, ¢ (t,%,7), is defined as follows: at time ¢, the
mass of the i-th constituent contained in the volume



(x—Ax/2,y—Ay/2,Z—AZ/2) < (‘x" )",Z")
< (x+AX/2, y+AY/2, 2+ Az/2)  (2.1)

with an age lying in the interval

T-At/2 £ 7T £ 1+A1/2 2.2)
tends to P, (¢, X,T)Ax AyAz AT, as Ax, Ay, Az, and At tend to zero, where p is the density
of the fluid. For the sake of simplicity, it is assumed that the variations of the latter are
negligible, i.e. the Boussinesq approximation may be made. Further hypothesising that the
age is positive definite, the concentration at time ¢ and location X of the i-th constituent is
thus

oo

Ctx = [ ¢@x) di. 23)
0
Therefore, at the same time and location, the mean age of the i-th constituent is given by

1 o
a.(t,x) = —— | 1¢.(t,x,7) dr. 2.4
(1.%) o (1,%,T) @4
As will be seen, it is convenient to introduce an additional variable, namely the age
concentration, which is defined to be
a,x) = C(1,x)a,(t,Xx). 2.5)

From the mass budget of every constituent, Delhez et al. (1999) showed that the
concentration distribution function obeys the following partial differential equation:

9 L weVe = p —d + Ve(Keve) - 25 2.6)

at H 1 4 H a,r
where V and Ve represent the gradient and divergence operators, respectively; p, (20)
and d, (20) denote the rate of production and destruction of the i-th constituent, which may
be due to radioactive decay, chemical reactions, etc.; u represents the fluid velocity
resolved in the model considered, while K is the diffusivity tensor needed to parameterise
in a Fourier-Fick manner the unresolved transport of the constituent under study, which is
due to turbulent fluctuations and molecular-scale processes.

If relevant initial and boundary conditions are available, (2.6) may be solved so as to
eventually obtain, from (2.3) and (2.4), the concentration and the mean age of any
constituent of the fluid mixture under study. In most applications, carrying out this task is
unlikely to be easy, since the concentration distribution function depends on 5 independent
variables, i.e. 7, x, ¥, z, and 7. If no information is required about the distribution of the
mass in the age direction, it is not necessary to solve the equation governing the age
distribution. It is probably more straightforward to estimate the concentration and the
mean age from the equations they obey, which may be derived from (2.6), essentially by
integration over 7. The associated mathematical manipulations are set out in Delhez ef al.
(1999) without any simplifying hypotheses. In this study it is sufficient to outline the
method for obtaining the age and age concentration equations for a passive tracer within



the assumptions underlying the simple, idealised, one-dimensional fluid flow problem to
be dealt with.

3. The one-dimensional problem

Only one tracer is considered: the subscript “i” will be omitted from here on so as to
simplify the notations. The fluid flow is one-dimensional, so that one space co-ordinate
and one velocity component, namely x and u, need to be retained. The diffusivity tensor
reduces to the diffusivity coefficient k. Both u and k are assumed to be positive constants.
The tracer is passive, implying that its production and destruction rates are zero. Under all
these hypotheses, the fundamental equation (2.6) transforms to

2
LE N '3 o1
ot ox ox a1
The age of the tracer parcels is assumed to be zero at the very moment they are released
by the source into the fluid flow. Hence, their age represents the time elapsed since
leaving the source. Accordingly, if g(f) represents the rate of tracer release of the point-
source, which is located at x=0, and if § denotes the Dirac function, the concentration

distribution function must satisfy the boundary condition

, ct,x,t=0) = p lg()d(x-0). (3.2)
As was argued in Delhez ef al. (1999), ¢ must also be such that
lim [Te(s, x,7)] = 0. (3.3)
T--yoo0

Therefore, integrating (3.1) over T and taking (3.2)-(3.3) into account leads to the equation
governing the tracer concentration:

ac . oC o’C

— + y— = d(x-0) + k—>-. 34

3 F™ pg8(x-0) 32 (34
Then, multiplying (3.1) by 7, integrating over 7, and using the boundary conditions above,
it is readily seen that the age concentration obeys

da 3o 0%a

—_— 4 =C+k WA

ar o “ox ox
Given that the mean age, 4, is the ratio of the age concentration to the concentration, (3.4)
and (3.5) may be combined to give the equation governing the evolution of the mean age,

ie.

(3.5)

da da -1 ?%a
—_—+t w— =1~ O(x — 0—+k , 3.6
Y E™ P go(x—0) FY) (3.6)
‘where w may be interpreted as an “equivalent velocity” defined to be
2k9C
wW=u- ——. 3.7
C ox G

The space-time domain of interest is defined as
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0 £t <o and —o0 < x < oo, (3.8)
At the initial instant, C, o, and a are prescribed to be zero:
[C(t=0,x), a(t=0,x), a(t=0,x)] = (0, 0, 0). 39
Finally, none of the unknowns is allowed to grow exponentially as |x] = o,

The tracer ptresent in the vicinity of the source is a mixture of tracer that has just left the
source, of which the age tends to zero, and tracer that has travelled the domain of interest
as a result of advective and diffusive transport since it was released by the source,
implying that its age is greater than zero. Therefore, the mean age at x=0, being the
average of the age of all tracer parcels present at this point, is likely to be larger than zero.
For diagnostic purposes it may be equally relevant to prescribe that the age be zero at x=0.
In this case, the age represents the time elapsed since leaving the point x=0, rather than the
time elapsed since leaving the tracer source. Obviously, this has no impact on the tracer
concentration. In addition, the equation governing the evolution of the age concentration is
unchanged. However, the domain of interest in which this equation must be solved is
modified, since, in this alternative approach to the determination of the age, the point x=0
belongs to the boundary of the domain. At this point the following boundary conditions
must be satisfied:

oa*(t,x=0) = 0 = a*@t,x=0), 3.10)

where asterisked variables are those associated with the alternative age definition.-

4. Exact solution to the problem

To simplify the notations and render the solutions more general, it is convenient to
introduce the following dimensionless independent variables:

~ t ~ X
t = and = . 4.1
PP T @D
The equivalent velocity w and the rate of release of the source may be scaled as
w=2 and §=4, 4.2)
u Q

where Q represents the typical order of magnitude of g. Finally, the dimensionless
counterparts of the unknowns of the problem,

¢=—C  ad @=-—2— ad d=-—rs (4.3)
0/pu) ) 4kl u

are defined in such a way that

a5 = CF,Had,.%). (4.4)
Substituting the dimensionless variables into the partial differential problem and dropping
the tildes yields the dimensionless equations to be solved
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ac aC 19%c

24 8 -0+ o @5)
%‘. + %% -c+ %%‘j 46)
?Tj + w% = 1- BG-0Z 4 igxi‘; @7

with
w=1- ElEaa—f 4.8)

Similar transformations apply to o * and a*, as well as the equations they obey. This is
rather straightforward, so that no details need to be given. From here on, unless otherwise
stated, only dimensionless quantities will be dealt with, but, for the sake of simplicity,
their usual appellations — i.e. time, velocity, age, etc. — will still be used.

Being non-linear, the age equation (4.7) is likely to be uneasy to solve. Fortunately, it is
possible to obtain the age without having recourse to (4.7): it is sufficient to determine the
tracer concentration and the age concentration from coupled linear equations (4.5) and
(4.6), and, then, derive the age according to (4.4) as the 1atio of the age concentration to
the tracer concentration. This.does not imply, however, that the equation obeyed by the
age should always be disregarded: this relation may turn out to be helpful to investigate
certain properties of the age, as is seen below and in Deleersnijder ez al. (2000).

For solving the partial differential problem above, it is convenient to resort to the
temporal Laplace transform. Applying the latter to the tracer concentration and the age
concentration equations, and taking into account the initial conditions (3.9) leads to the
following differential equations

94(C) 1924(C)

L(IC) + ~=—= = L(@)d(x-0) + ~ , 4.9
sL(C) ™ (@)0(x -0) yarw 4.9)

. 2 .,
so@) + 29 o g+ LTAD 4.10)

4 ox

where the operator £ represents the Laplace transform, which is such that
£Co,9) = [ (Cog)e™ dr. @.11)
0

Obviously, the Laplace transform of the alternative age concentration obeys an equation
similar to (4.10).
Applying the boundary conditions set out above, it is readily seen that

1 . | -
LC,o,0%) = S SR e
(1+s) 2(1+s) l+s 1+s v
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By using the Laplace transform properties listed in Abramowitz and Stegun (1964) and the
table of Laplace transform originals compiled in this treatise, the originals of transforms
(4.12) are obtained after a few manipulations:

t X2 ’

Ctx) = 7% & [ ) a-ry M2 =t (4.13)
0
: R

at,x) = nV? e f q@) ¢ -1)W? e -7 “ (4.14)
0
3 .

a*@x) = |1 e [ q) exfc—l"‘,l-l,—2 e ar, (4.15)
0 (-1

where “erfc” is the complementary error function,
erfe(v) = 217> [ &% ap. (4.16)

v

5. Symmetry of the age
From (4.13), it is readily demonstrated that the tracer concentration tends to be much
larger on the downstream side (x>0) of the source:

C@t,x) = e¥C(t,~x). (5.1

This is in agreement with physical intuition. The age, however, which is given by

g —-i—(t_t')
f gt) ¢-1)% e -7 ar
arx) = 2D - 0 ; . (52)
C@,x) o Ao
j qt) =1y V2 e =t ar’
0
r 1
. t) etfe—I2— ¢ gy’
o (1,%) b [ o N
a*(t,x) = = 0 : : (5.3)
C(t,x) t Xt
j q@t) ¢-1)yV? ¢ =¥ dar
0
is symmetric with respect to the point at which the source is located, i.e.
a(t,x) = a(t,—x), - (G4
a*(t,x) = a*(t,—x). (5.5)

This property is counterintuitive, since the age field could have been expected to reflect
somehow the strong asymmetry of the concentration field.
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Table 1 The tracer concentration, age concentration, and the age obtained with a unit rate
of release of the source (g()=1). The incomplete gamma function, ¥, is defined in relation
(5.10). Integral (5.11) is crucial for deriving the limits ¢ — oo of the functions exhibited
here.

0<t<o t—>eo 0<t<e
—o0 < X < 00 —0 L X <o x=0
: 2
Ct, x): n2e2[g71% 0 “dp 2D 2y 1/2,6)
: 0
' 2
ot,x): nl22 (912 @ 4o (/2 +|xpe?*HD ™V 2y(3/2,1)
0
: I
[0!% 0 “ap
alt, x): N — 172+ ¥G/2,0
7 Y(1/2,5)

t

-Z -8
j 012 8 4o
0

t
o (2, x): |‘x|e2"'|.e“ee1fce|‘lill2d6 o |x|e

0

2x-lx) _ 0

H
fe‘eerfc % do

a*(t,x): /2| o 0
t X

-
[o17% & “ap
0

It must be pointed out that the latter property can also be deduced by analysing the
equation governing the age, (4.7), provided the tracer concentration field is known.
Substituting (4.13) into (4.8) provides the following expression of the equivalent velocity:

: HES
f gty ¢ -)y>?% e -t dr
wt,x) = x 2 > ) (5.6)
t X ,
N oo n-l2 T
q(t’) (¢t—1") e dt
o .

Thus, w is an odd function in x, i.e. w(z,x) = —w(t,—x), which implies that the equation
(4.7) may be transformed to
da Oa

5 + w(s)x]) N

9%a

1
— . 5.7
4’a|x|2 ¢

= 1- @dx-0<
’ ‘q(x )C+
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As a consequence, owing to the initial condition a(t = 0,x) =0, the age must obey the
symmetry property (5.4). Obviously, this discussion applies to the alternative age a* too.

1t
pumemenee 5 00
— = \
6 0.8 t=50 \
Pz - —-1=10 \
9 \
-§0‘,6 - = t=01 \
£ \
o \
e 0.4} \
o 3 \
o _n A
0.2 fii
/] \' \
0 7 )\ >
-4 -2 0 2 4

space coordinate: x
Figure 2. The tracer concentration field at different instants, obtained with a unit rate of
release of the source (g(£)=1).

According to Abramowitz and Stegun (1964), the complementary error function admits
the following asymptotic expansion :
1 3
erfe(v) ~ ml2v7le Y (1 —-——+———) , Voo, 5.8
(©) 20?40t 58
Taking advantage of the latter, it may be seen that the difference between the two ages

considered herein decreases as the distance to the source increases:
t

X2 .
—l (1) )
f gty ¢=1)"? ¢ -7 1+0 =8 ar
I

a(t,x) — a*(t,x) = 7 0 , 3 . (5.9
: ———(t=t")
j q(t/) (t__tl)-.—l/2 e 1=t dr’
0

To illustrate the properties of the age established above, it is appropriate to examine the
particular case where the rate of release g(z) of the source is constant. With no loss of
generality, it may be assumed that g(#)=1 at any time r20. The ensuing tracer
concentration, age concentration, and age are collected in Table 1, along with their values
in the limit # — < and at x=0. These solutions are also displayed in Figures 2 and 3.
Figure 4 shows that the relative difference between the two ages introduced here, a and
a*, decreases as the distance to the point-source increases. In other words, it is only in the
vicinity of the source that the treatment of the age at the source point has a significant
impact.
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space coordinate: x space coordinate: x

-4 -2 0 2 4 -4 -2 0 2 4
space coordinate: x , space coordinate: x

Figure 3. The age concentration and age fields at different instants, obtained with a unit
rate of release of the source (g(#)=1). The alternative age concentration and age are
displayed in the panels in the right-hand column.

In Table 1 use is made of the incompleté gamma function, which is defined as

kY]
YGv) = j 65le® dp. (5.10)
5 ,

On the other hand, to obtain to obtain the limit ¢ — o= of the relevant variables, it is
necessary to have recourse to the following integral (see Gradshteyn and Ryzhik, 1965):

w B > |
[t ee™ ap = 2(%)2&(2@), 6
0 ‘ a :

where K denotes a modified Bessel function.
For the constant source case, the age in the 11m1t t — o may be expressed in

dimensional vanables as follows:

16



2k x . . .
alt—>o,x) = — + L (dimensional variables). (5.12)
u u
So, though the age at x=0 depends on the diffusivity k, the rate at which the age grows as
the distance to the source increases is independent of the diffusivity. This seems rather
natural on the downstream side of the source, since, in this region, the tracer concentration

in the limit ¢ — <o is determined by advection only:

Ct—oo,x>0) = ‘—)Q— (dimensional variables). (5.13)
u

On the upstream side of the source, however, the concentration,

_uA
Ct— o,x<0) = i e *  (dimensional variables), (5.14)
pu
clearly depends on diffusive processes, which is why it is surprising that the growth rate of
the age is independent of the diffusivity in this region too. The expression of the
alternative age,

a*(t—oo,x) = (dimensional variables), (5.15)

|
u

is even more surprising, since it does not involve the diffusion coefficient at all. The
physical explanation of these rather strange behaviours is yet to be found.

space coordinate: x
Figure 4. The relative differtence between the two types of age, (a—a*)/a, at different
instants, obtained with a unit rate of release of the souzce (g()=1).

6. Discrete solution

The age, as devised in Delhez ez al. (1999) is mostly intended for numerical models, i.e.
systems for providing discrete approximate values of the solutions of continuous
equations. This is why it is desirable that it be examined whether or not discrete

17



approximations of the age are symmetric with respect to the point-source. Obviously, the
answer depends on the numerical method resorted to. In other words, no universally-valid
analysis of the symmetry of discrete solutions can be made. Nevertheless, it is appropriate
to solve at least one discrete problem, in order to see if there is any potential for discrete
approximations of the age to be symmetric with respect to the source.

A steady-state situation with g(s)=1 is considered. A discrete approximation to
equations (4.5) and (4.6) must be worked out and solved under the hypothesis that the
solutions are time-independent. The finite-difference method is selected for obtaining the
discrete values of the discrete tracer concentration E‘] and age concentration a}. at points

xl.=ij (j=0,+1,£2,...), where Ax is the space increment and the overbar is used to

distinguish the discrete variables from their continuous counterparts. The diffusive terms,
i.e. the second derivatives appearing in (4.5) and (4.6), are discretised by means of the
classical, three-point, second-order accurate technique. The first order derivatives
representing advective transport are approximated by a weighted average of the first-order,
upwind scheme and the second-order, ¢entred scheme, which is a highly simplified
version of the sophisticated, non-linear advection schemes based on the concept of flux
limiter. Accordingly, if u (0SU<1) represents the upwinding rate, the steady-state finite

difference analogues of cortinuous equations (4.5) and (4.6) read

C.-C, C..~C, 1C...+C._ —2C,
J J-1 J+1 j-1 = J+i Jj-1 J
- s (d-p)t—t =g t ————— 6.1
— (I-w——= %+ 3 3 6.1)
and
o, -, o, —O; a,  +o, =20,
j j-1 j+1 j-1 = 1 j+l1 j-1 Jj
— (- = C. + — . 6.2
Y == it A (62)
where
- 1 —-
— ee——— = { g '=+
49 and g; 0 for j=+1,12,... 6.3)

Needless to say that the alternative age concentration obeys a relation similar to (6.2) and
that the discrete ages can be evaluated as

_ . @)
(a/7 a]) = E . (6"4)
J
Let
K = l. + & : (65)
4 2

be viewed as an equivalent — dimensionless — diffusivity, consisting of the sum of the
actual diffusivity, 1/4, and the artificial diffusivity due to upwinding. If the discrete
variables are determined in such a way that their limits |x] — oo is equal to that of their
continuous counterparts, the solution of the problem (6.1)-(6.3) is

18



J-lil

(€, o, @) = [1, 2x+|flAx, ljjax] r 2, (6.6)
where
o A ©.7)
2x — Ax

For the concentration to remain positive, as is highly desirable, the upwinding rate y
must be sufficiently large that r is positive, i.e.
1
>1- = 6.8
u TAx (6.8)

Nonetheless, whether or not the constraint above is met, the age,

@, @) = [2c+|jAr, jlax], - (6.9)
is symmetric with respect to the source:
(@, a) =(a_ a_;). 6.10)

In addition, it is readily seen that, as expected, the discrete age converges towards its
continuous counterpart as the space increment Ax decreases:
lim a. = a(t—oo,x,). A1
Ax—0 (1= e 1) 6.11)
JjAx=const.
Itis somewhat surprising, however, that, whatever the value of Ax, the discrete alternative

age is equal to its continuous counterpart: v
a = a*(—>x). (6.12)

Finally, it must be realised that the age cannot be symmetric with respect to the source if
the upwinding rate used in (6.1) is not equal to that employed in (6.2).

7. Conclusion

The age of a tracer released by a point-source, i-e., roughly speaking, the time elapsed
since leaving the source, may be estimated in two ways, according to whether the age is
prescribed to be zero or not at the location of the source. A one-dimensional fluid flow
with constant velocity and diffusivity was considered. It was shown that the difference
between these two age fields decreases as the distance to the source increases and that the
age, whatever the approach selected, is symmetric with respect to the point-source. These
results were obtained from the analytical, time-dependent solutions of the partial
differential problem from which the age may be derived — according to the general theory
of the age developed in Delhez ef al (1999) and Deleersnijder and Delhez (2000). Finally,
simple, steady-state, finite difference analogues of this problem were also shown to
exhibit the symmetry property, implying that a numerical model, provided appropriate
discretisation schemes are 1esorted to, can reproduce the symmetry of the age field.
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The aforementioned analytical results, though obtained in a highly idealised fluid flow
problem, are believed to be helpful, in a heuristic manner, to assess numerical simulations
of complex fluid flows in which the age is introduced for diagnostic purposes. It is often
tempting to asctibe the supposedly excessive smoothness or symmetry of a scalar field to
the numerical diffusion being too large or the grid being too coarse. As far as the age is
concerned, this temptation must be resisted, at least in circumstances that bear some
similarity with the problem dealt with above. In other words, that a numerical model
produces an age field rather symmetric with respect to a point-source should not be
interpreted a priori as a numerical artefact.

In another study (Beckers et al. 2000) the properties of the age were investigated in
multi-dimensional fluid flows, with a particular emphasis on the symmetry in the vicinity
of a point-source. The multi-dimensional nature of the problem to be dealt with prevented
the authors from generalising some key results obained herein. In particular, it was not
possible to examine the alternative strategy in which the age is precribed to be zero at the
point-source and no difference equation could be solved.
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